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INTERATOMIC FORCES FROM SPECTRAL DATA, AND UTILIZATION OF 

POTENTIAL CURVES IN SPECTROSCOPY SCATTERING AND KINETICS* 

by 

-f Robert James L e  Roy 

(under t h e  supe rv i s ion  of P ro fes so r  Richard B o  Berns te in)  

P a r t  I cons ide r s  d i v e r s  means of determining diatomic p o t e n t i a l  

curves,  p lac ing  p a r t i c u l a r  emphasis on u t i l i z a t i o n  of t h e  spec t ro-  

scopical ly-observed d i s t r i b u t i o n  of v i b r a t i o n a l - r o t a t i o n a l  energy 

l e v e l s .  

1 +  
(X C g ) 1 2 .  

of t h e  d i s s o c i a t i o n  l i m i t  and long-range p o t e n t i a l  t a i l  from t h e  d i s -  

t r i b u t i o n  of t h e  uppermost v i b r a t i o n a l  levels. 

express ion  f o r  t h e  v i b r a t i o n a l  spac ings  which l e a d s  t o  a " b e t t e r  t han  

Birge-Sponer" p l o t  f o r  determining t h e  d i s s o c i a t i o n  l i m i t  

procedures were app l i ed  s u c c e s s f u l l y  t o  B( II 

I 

reviewed, inc luding  one u t i l i z i n g  3-body atomic recombination rate 

The widely-ubed RKR procedure i s  app l i ed  t o  ground-state  

A new approach is introduced which al lows t h e  determimatton 

It a l s o  y i e l d s  a s imple 

These 

3 +  ) - s t a t e  CR2, B r 2  and ou 

Other methods f o r  t h e  de te rmina t ion  of diatomic p o t e n t i a l s  are 2 "  
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"National Research Council  of Canada Scholarsh ip  ho lde r ,  1969-71. 
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cons tan t s .  

The b e s t  known ab  i n i t i o  d ia tomic  p o t e n t i a l  is t h a t  c a l c u l a t e d  

by KoZos and Wolniewicz (KW) f o r  ground-state molecular hydrogen. 

Nevertheless  , a comparison of t h e  ca l cu la t ed  and observed v i b r a t i o n a l  

energy levels ind ica t ed  t h a t  a s m a l l  c o r r e c t i o n  is requ i r ed  by t h e  KW 

p o t e n t i a l ;  t h i s  i s  evaluated empir ica l ly .  

P a r t  II of t h e  t h e s i s  cons iders  a number of problems i n  which a 

knowledge of t h e  appropr i a t e  p o t e n t i a l  curves  a l lows a b e t t e r  under- 

s tanding  of c e r t a i n  phys ica l  phenomena. Appl ica t ion  of t h e  new method 

of P a r t  I l eads  t o  a reassignment of some I2 uv l i n e s  emi t t i ng  i n t o  

a shal low van de r  Waals e x c i t e d  s ta te  wi th  a p o t e n t i a l  hump. 

A s tudy  w a s  made of spec t roscop ic  and sca t t e r ing - theo ry  mani- 

f e s t a t i o n s  of t h e  quasibound diatomic levels which l i e  above t h e  

d i s s o c i a t i o n  l i m i t ,  b u t  are bound by a p o t e n t i a l  b a r r i e r .  Resu l t s  of 

i l l u s t r a t i v e  computations are presented  f o r  ground-state  molecular 

hydrogen, showing ex tens ive  b a r r i e r  pene t r a t ion .  This  impl ies  t h a t  

Berns t e i n ' s  method of ex t r ac t ing  long-range p o t e n t i a l s  from r q t a t i o n a l  

p r e d i s s o c i a t i o n  d a t a  should n o t  be  appl ied  t o  h y d r i d i c  diatomics .  

The eigenvalues ,  and t h e  expec ta t ion  va lues  of R, R 

energy are c a l c u l a t e d  f o r  a l l  bound and quasibound levels of ground- 

s ta te  H 

p o t e n t i a l  of KoZos and Wolniewicz, 

2 R-2 and k i n e t i c  

HD and D2$ us ing  t h e  ab i n i t i o  r e l a t i v i s t i c - a d i a b a t i c  2'  

A method f o r  c a l c u l a t i n g  exact  t unne l l ing  p r o b a b i l i t i e s  f o r  one- 

dimensional p o t e n t i a l  b a r r i e r s  is  presented  and used t o  test Bell 's  

approximate tunne l l ing  f a c t o r  formulae f o r  t runca ted  pa rabo l i c  b a r r i e r s .  

Most of t h e  r e s u l t s  i n  t h i s  t h e s i s  have by now been publ ished.  
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1. INTRODUCTION 

Knowledge of in te rmolecular  f o r c e s  i s  a p r e r e q u i s i t e  t o  a b a s i c  

understanding of most of t h e  

However, a l though t h e  formal 

p r o p e r t i e s  is w e l l  known, 1-3 

r e l a t i v e l y  l i m i t e d  number of 

f o r  such p o t e n t i a l s  w i l l  no t  

physical, and chemical p r o p e r t i e s  of matter. 

theory f o r  t h e  c a l c u l a t i o n  of many observable  

a c c u r a t e  p o t e n t i a l s  are a v a i l a b l e  f o r  a 

systems. It now appears  as i f  t h e  need 

b e  answered by a p r i o r i  c a l c u l a t i o n s  i n  

j 

a 

t h e  near  f u t u r e .  Only for t h e  two s imples t  molecular systems, H and 

He2,  have such t h e o r e t i c a l  p o t e n t i a l s  achieved accuracy as good as, o r  

b e t t e r  than  t h a t  of p o t e n t i a l s  ob ta ined  empiLrically by i n v e r t i n g  

experimental  d a t a . 4  

2 
z 1 

On t h e  o t h e r  hand, a growing number of r o u t e s  t o  

t h e  p o t e n t i a l  f u n c t i o n  from experimental  d a t a  are being developed. 293 

The present  d i scuss ion  i s  concerned only  wi th  t h e  s i m p l e s t  c l a s s  

of i n t e r a c t i o n s ,  t hose  which may be  t r e a t e d  mathematical ly  as one-dim- 

e n s i o n a l  problems. 

of i s o l a t e d  p a i r s  of atoms, ahbough  a p p l i c a t i o n s  t o  complidated 

problems which are. only approximately r educ ib le  t o  one mathematical  

dimension are a l s o  cons idered ,  

The p r e s e n t a t i o n  is  d iv ided  i n t o  two p a r t s ,  t h e  f i r s t  of which is  

concerned wi th  t h e  deterrninatian of in t e ra tomic  p o t e n t i a l s  by " inversion" 

of experimental  da t a .  

of t h e  spectroscopicallyimeasured d i s t r i b u t i o n  of v i b r a t i o n a l - r o t a t i o n a l  

diatomic energy l e v e l s .  Considered are t h e  a l r eady  widely used RXR 

procedure;? and a new method which fo:cuses a t t e n t i o n  on the uppermost 

v i b r a t i o n a l  levels, y i e l d i n g  an  estimate of t h e  long-range p o t e n t i a l  

This  means, i n  e f f e c t  , t h e  i s o t r o p i c  i n t e r a c t i o n s  

' 

The g r e a t e s t  emphasis h e r e  is on t h e  u t i l i z a t i o n  



1. 2 - 

t a i l  and accu ra t e ly  l o c a t i n g  t h e  d i s s o c i a t i o n  l i m i t .  

are reviewed, inc luding  an i n d i r e c t  method based on measured rate 

cons tan ts  f o r  atomic recombination, I n  a s l i g h t l y  d i f f e r e n t  vein,, t h e  

accuracy of Kokos and Wolniewicz's' 2 p r i o r i  p o t e n t i a l  f o r  ground-state  

H2 i s  examined by comparing ca l cu la t ed  and observed v i b r a t i o n a l  energy 

levels. This  l eads  t o  t h e  sugges t ion  of an empi r i ca l  c o r r e c t i o n  t o  be  

added t o  t h e  t h e o r e t i c a l  p o t e n t i a l ,  

Other approaches 

The second p a r t  of t h e  t h e s i s  cons iders  a number of problems which 

i m p l i c i t l y  assume knowledge, 

about t h e  p o t e n t i a l  func t ion .  F i r s t ,  a p p l i c a t i o n  of t h e  new method of 

P a r t  I is coupled wi th  t h e o r e t i c a l  knowledge of long-range in t e ra tomic  

fo rces  t o  fac i l i t a te  t h e  untangl ing  of some h i t h e r t o  confused spec t ro-  

s cop ic  assignments,  Next, a s tudy is  presented  of t h e  man i fe s t a t ions ,  

spec t roscop ica l ly  and via s c a t t e r i n g ,  of t h e  quasibound diatomic 

v i b r a t i o n a l - r o t a t i o n a l  levels which l i e  above t h e  d i s s o c i a t i o n  l i m i t ,  

b u t  are p a r t i a l l y  bound by a p o t e n t i a l  b a r r i e r .  

is found f o r  ground-state  H2, HD, and D2, implying t h a t  Be rns t e in ' s  

method of e x t r a c t i n g  long-range p o t e n t i a l s  from r o t a t i o n a l  p red i s soc ia -  

t i o n  d a t a  should no t  be  appl ied  t o  hydr ides  ( o r  deu te r ides ) .  

KoZos and Wolniewicz' p o t e n t i a l  f o r  ground state molecular hydrogen is  

then  u t i l i z e d  i n  t h e  calcuLat ion of t h e  e igenvalues ,  and expec ta t ion  

va lues  of k i n e t i c  energy and va r ious  powers of R f o r  a l l  t h e  bound and 

of d i f f e r e n t  degrees  of completeness, 

S i g n i f i c a n t  tunnel ing  

10 

The 

quasibound levels of H 

exac t  tunnel ing  p r o b a b i l i t i e s  f o r  a r b i t r a r y  one-dimensional 

p o t e n t i a l  b a r r i e r s  is presented .  It is then  used t o  d e l i n e a t e  

HI, and D2" F i n a l l y ,  a method of c a l c u l a t i n g  
2 9  
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t h e  range of v a l i d i t y  

f o r  tunnel ing  through 

of ,Bell's1' widely 

i n v e r t e d  pa rabo l i c  

3 

12 used approximate formulae 

b a r r i e r s  e 

Much of t h e  fol lowing c o n s i s t s  of r e p r i n t s  of a l r eady  publ i shed  

material, o;r r e p o r t s ;  some of t h e  l a t te r  w i l l  b e  submitted f o r  publ ica-  

tion.. As a r e s u l t ,  each s e c t i o n  is se l f -conta ined  wi th  its own f i g u r e s ,  

t a b l e s ,  and foo tno te s  and r e fe rences .  

FOOTNOTES 

1. J. 0. Hi r sch fe lde r ,  C. F. C u r t i s s ,  and R. B. Bird,  Molecular Theory 

of  Gases and Liquids  (John Wiley and Sons, Inc . ,  New York, 1964).  

J, Ross ( e d i t o r ) ,  Adv. Chem. Plays. - 10 (Molecular Beams, I n t e r s c i e n c e  2. 

Pub l i she r s ,  New York, 1966).  

3 .  J. 0. Hi r sch fe lde r  ( e d i t o r ) ,  Adv. Chem. Phys. I 12 ( In te rmolecular  

Forces I n t e r s c i e n c e  Pub l i she r s  New York, 1967) . 
The Koaos and Wolniewicz5 v a r i a t i o n a l  p o t e n t i a l  f o r  ground-state 4 .  

H2 has  a b e t t e r  d i s s o c i a t i o n  energy than  t h e  b e s t  spec t roscop ic  

v a l u e  e x i s t i n g 6  when i t  w a s  publ ished.  Although t h i s  s i t u a t i o n  has  

7 
I' s i n c e  been reversed  by Herzberg's new measurements, t h e  theore- 

-1 t i c a l  va lue  is s t i l l  w i t h i n  one cm of experiment.  For H e  two 

groups8 r e c e n t l y  s imultaneously publ ished fndependent c a l c u l a t i o n s  

2' 

i n  good agreement wi th  each o t h e r  and wi th  t h e  b e s t  empi r i ca l  

p o t e n t i a l s  e 

5, a) W. Kokos and L. Wolniewicz, J .  Chem. Phys. - 41, 3663 (1964); 

b )  i b i d .  - 4 3 ,  2429 (1965); i b i d .  4.9, 404 (1968). 
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7. 

G ,  Herzberg and A .  Monfils,  J. Mol. Spectry.  - 5,  482 (1960). 

G, Herzberg, J. Mol. Spectry.  33, 147 (1970); see a l s o  t h e  

r e a n a l y s i s  of h i s  d a t a  by W. C. Stwalley,  Chem. Phys. L e t t ,  5, 
241 (1970) e 

a )  H. F, Schaefer ,  111, D .  R e  McLaughlin, F. E. Harris, and 

B.  J, Alder ,  Phys. Rev. Let t .  - 25, 988 (1970); b) P. Ber tonc in i  and 

A .  C.  Wahl, Phys. Rev. L e t t .  - 25, 991 (1970). 

See, e.g. ,  t h e  d i scuss ion  by E. A .  Mason and L. Monchick i n  

Chapter 7 of Ref. (3) a 

R. B .  Berns te in ,  Phys. Rev. L e t t .  - 16, 385 (1966). 

R. P, B e l l ,  Trans.  Faraday Soc. - 55, 1 (1959). 

See, e .g . ,  E. F a  Caldin,  Chem. Rev. I_ 69, 135 (1969). 
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PART I 

THE EMPIRICAL,.DETERMINATION OF INTERATOMIC POTENTIALS 
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2. THE IXR METHOD: POTENTIALS FROM VIBRATIONAL-ROTATIONAL DATA 

2.1 DISCUSSION OF THE METHOD 

The Rydberg-Klein-Rees (RKR) procedure' a l lows t h e  de te rmina t ion  

of an  attractive diatomic p o t e n t i a l  below t h e  d i s s o c i a t i o n  l i m i t  from 

i t s  known v i b r a t i o n a l - r o t a t i o n a l  energy level spectrum. It i s  t h e  

s imples t  and 

a p o t e n t i a l ,  

appl ied  t o  a 

In t h i s  

most a c c u r a t e  method known f o r  determining t h e  "bowl" of 

and i n  t h e  p a s t  

wide v a r i e t y  of 

approach, p a i r s  

decade i t  has  been very  s u c c e s s f u l l y  

sys  terns. 

of classical tu rn ing  point's l y ing  on t h e  

233 

p o t e n t i a l  are c a l c u l a t e d  a t  ene rg ie s  corresponding t o  chosen va lues  

(usua l ly  i n t e g e r )  of  t h e  v i b r a t i o n a l  index, v . The inne r  (R - ) and 

o u t e r  (R ) t u rn ing  p o i n t s . a t  t h e  energy corresponding t o  a g iven  va lue  4- 

of v are 

where 
V 

and 



2.1 
_I 6 

Here t h e  s tandard  v i b r a t i o n a l  ene rg ie s  G(v) and r o t a t i o n a l  cons t an t s  

B are both i n  cm , and t h e  reduced mass of t h e  n u c l e i ,  1-1 , is  i n  m u  

1 2  

Eq.(3) were taken from Ref . (4) .  

-1 
V 

( C). The phys ica l  cons tan ts  c o l l e c t e d  i n  t h e  numerical  f a c t o r  i n  

Nuclear - vs Atomic Reduced Mass 

There is some disagreement i n  t h e  l i t e r a t u r e  over whether t h e  

reduced mass used i n  Eq.(3) should b e  t h a t  of t h e  two n u c l e i ,  o r  of t h e  

two atoms.5 This is  equiva len t  t o  t h e  ques t ion  of which mass should 

b e  used i n  t h e  r a d i a l  Schrcdinger equat ion,  of which Eqs.(l-3) i s  a 

WKB-based invers ion .  Considerat ion of t h e  sepa ra t ion  of e l e c t r o n i c  

and nuc lea r  motion i n  t h e  t o t a l  Hamiltonian shows t h a t  i n  t h e  clamped 

n u c l e i  (s imple Born-Oppenheimer) and a d i a b a t i c  approximations t h e  

? 

r e s u l t i n g  r a d i a l  Schrgdinger equat ion depends only on t h e  nuc lear  

reduced mass. 6'7 On t h e  o t h e r  hand, Herman and Asgharian's8 per turba-  

t i o n  t rea tment  of t h e  exact  Hamiltonian f o r  n u c l e i  and e l e c t r o n s  

y i e lded  a sepa rab le  e f  f ective r a d i a l  Schrzdinger equat ion  depending 

mainly on t h e  atomic reduced mass, bu t  w i th  c o r r e c t i o n  terms depending 

on t h e  r a t i o  of t h e  atomic %o t h e  nuc lea r  reduced mass. While t h i s  

ques t ion  i s  n o t t y e t  f u l l y  reso lved ,  t h e  work presented  h e r e  ( i n  Secgion 

2 . 2 )  uses  t h e  nuc lear  reduced mass. 

Correc t ions  t o  Calcu la ted  Turning Po in t s  

It i s  apparent  from cons idera t ion  of Eqs.(l-3) t h a t  any e r r o r  i n  

t h e  assumed va lues  of t h e  phys ica l  cons tan ts  o r  reduced mass a f f e c t s  

ca l cu la t ed  RKR tu rn ing  po in t s  only through t h e  m u l t i p l i c a t i v e  f a c t o r  
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K i n  E q . ( l ) .  This is  p a r t i c u l a r l y  important  i n  view of t h e  uncer- 

9 t a i n t y  as t o  which reduced mass (atomic o r  nuc lea r )  should b e  used. 

C lea r ly ,  such e r r o r s  are simply removed by mul t ip ly ing  a l l  t h e  ca lcu la-  

t e d  tu rn ing  p o i n t s  by t h e  numerical  f a c t o r  

Kccorrected) / K ( i n i t i a 1 )  e 

This  approach w i l l  b e  found u s e f u l  i n  Sec t ion  2.2 

Combined I so tope  RKR Calcu la t ion  

A fact  appa ren t ly  not  prev ious ly  noted is t h a t  experimental  d a t a  

f o r  d i f f e r e n t  i s o t o p e s  of a p a r t i c u l a r  s p e c i e s  can b e  used toge the r  i n  

an RKR c a l c u l a t i o n  of t h e  i n t e r n u c l e a r  p o t e n t i a l  f o r  a given e l e c t r o n i c  

s ta te ,  The necessary  assumption, v a l i d  w i t h i n  t h e  clamped n u c l e i  

approximation, 

t h e  same i n t e r n u c l e a r  p o t e n t i a l .  

t h i s  i s  a very  good approximation, and i n  any case, disagreement wi th  

it is  probably less than  t h e  e r r o r  i m p l i c i t  i n  t h e  u s e  of  t h e  WKB 

approximation on which t h e  RKR method i s  based. 

i s  that t h e  d i f f e r e n t  i so topes  are sub j ect t o  p r e c i s e l y  

For a l l  non-hydrogenic molecules 

11 

According t o  t h e  W K B  a p p r o ~ i m a t i o n , ' ~  i n  a given p o t e n t i a l  w e l l  

t h e  energy corresponding t o  v i b r a t i o n a l  index v of i so tope - i  

p r e c i s e l y  corresponds t o  index 

i 

of i so tope- j .  Thus t h e  experimental  G(v) and B d a t a  f o r  i so tope - i  

(i + j >  may b e  t r e a t e d  simply as a d d i t i o n a l  i so tope- j  dat,a a t  t h e  

(usua l ly  non-integer) v i b r a t i o n a l  index v .  (i) Combining t h e  d a t a  

V 

J 
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BV 
i n  t h i s  manner should g ive  smoother and more accu ra t e  G(v) and 

func t ions ,  covering a wider  range than  f o r  any of t h e  i s o t o p e s  considered 

alone. This  means t h a t  more accu ra t e  and ex tens ive  'i(v) and g ( v )  

func t ions  and tu rn ing  po in t s  w i l l  b e  obtained.  

t u r e s  w i l l  only have t o  b e  eva lua ted  once f o r  a given state of  a 

p a r t i c u l a r  chemical species. .  

I n  a d d i t i o n ,  t h e  quadra- 

An example of  t h e  type  of s i t u a t i o n  i n  which t h i s  "combining 

i so topes"  approach may b e  

of  B r 2 .  Here t h e r e  e x i s t  

3 4 -  p a r t i c u l a r l y  f r u i t f u l  i s  t h e  B (  II ou) s ta te  

f a i r l y  a c c u r a t e  v i b r a t i o n a l  ene rg ie s  

79,79 15 ( repor ted  t o  0.01 an-') and Bv va lues  f o r  levels v' = 1-9 of Br2 3 

and f o r  v '  = 9-19 and 50-53 of both of t h e  pure  i so topes  79,79Br2 and 

81' 81Br ? "In a d d i t i o n  much less a c c u r a t e  band-head ene rg ie s  ("not 

79 9 ''Br are accura t e  t o  b e t t e r  than  2 cm-l',> f o r  t h e  mixed i s o t o p e  

a v a i l a b l e  for the, i n t e rmed ia t e  reg ion  v '  = 20-48.l' Combining t h e s e  

d a t a  as suggested above should g ive  t h e  b e s t  RKR curve c u r r e n t l y  

2 

2 

ob ta inab le  for t h i s  state.  This  approach could a l s o  b e  very  p r o f i t a b l y  

1 9  
g 

appl ied  t o  B r 2 ( X  C ) f o r  which the e x i s t i n g  d a t a  are q u i t e  analogous 

15 t o  t hose  f o r  t h e  B-state. 

FOOTNOTES 

1, a) R. Rydberg, 2. Physik 73, 376 (1931); i b i d ,  80, 514 (1933); 

b )  0. Kle in ,  2. Physik - 7 6 ,  226 (193%); c)  A ,  L e  G.  Rees, Proc.  

Phys. Soc. (London) 59, 998 (1947). 
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2. 

3. 

4 .  

5. 

6. 

7. 

8.  

9. 

2.1 - 

considered: 

See, e .g . ;  a) E .  A. Mason and L e  Monchick, Adv. Chem. Phys. - 12 

( In te rmolecular  Forces)  329 (1967) , §IIIA and r e fe rences  mentioned 

t h e r e i n ;  b )  J,  I. S t e i n f e l d ,  R. N. Zare, L. Jones,  M. Lesk, and 

W. Klemperer, J ,  Chem, Phys, I 42, 25 (1965); c )  R e  J. Spindler ,  Jr., 

J. Quant. Spec t ry .  Radia t ,  Transf .  - 9, 597, 627, 1041 (1970); 

d )  J. A. Coxon, J. Quant. Spectry.  Radia t .  Transf .  ( i n  p r e s s ) .  

R. J. L e  Roy, J. Chem. Phys. I 5 2 ,  2683 (1970);  see Sec t ion  2 . 2  

B e  N. Taylor ,  W .  H. Parker ,  and D. N. Langenberg, Rev. Mod. Phys. 

- 41, 375 (1969). 

The nuc lea r  reduced mass w a s  used i n  Ref . (3) ,  wh i l e  atomic reduced 

masses w e r e  d e f i n i t e l y  used i n  Ref . (2d) ,  and probably a l s o  i n  t h e  

o the r  work r e f e r r e d  t o  i n  foo tno te  ( 2 ) .  

See, e .g . ,  J. 0. Hi rschfe lder  and W. J .  Meath, Adv. Chem. Phys. 3.2, 

( In te rmolecular  Forces) 3 (1967). 

L.  Wolniewicz, J. Chem, Phys. - 45, 515 (19661, and r e fe rences  t h e r e i n .  

R. M. Herman and A.  Asgharian, J. Mol. Spec t ry .  - 19,  305 (1966). 

For t h e  inverse problem of determining v i b r a t i o n a l - r o t a t i o n a l  

e igenvalues  from a known p o t e n t i a l ,  it is r e a d i l y  shown that t h e  

f i r s t - o r d e r  e r r o r  i n  an eigenvalue a r i s i n g  from u s e  of t h e  wrong 

reduced mass i s  t h e  product  of t h e  re la t ive e r r o r  in .  t h e  mass used, 

t i m e s  t h e  expec ta t ion  va lue  of t h e  k i n e t i c  energy of t h e  level 

P “p 

For ground-state H2, a change from atomic t o  nuc lea r  reduced mass 

-1 10 y i e l d s  level s h i f t s  as l a r g e  as 5.6 cm e 
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10,  R. J. L e  Roy and R. B .  Berns te in ,  J. Chem. Phys, I 49, 4312 (1968); 

see Sec t ion  5 .  

11. The dominant c o r r e c t i o n  t o  t h e  clamped n u c l e i  approximation, t h e  

d iagonal  c o r r e c t i o n  €or nuc lea r  motion ( a d i a b a t i c  co r rec t ion )  is  

r e l a t i v e l y  small and varies d i r e c t l y  as t h e  inve r se  of t h e  i s o t o p i c  

nuc lea r  reduced mass. 

Wolniewicz12 have ca l cu la t ed  t h i s  q u a n t i t y  f o r  t h e  ground e l e c t r o n i c  

s ta te ,  I n  t h i s  case, below t h e  d i s s o c i a t i o n  l i m i t  t h e  e f f e c t i v e  

c o r r e c t i o n  has  a maximum of 25 cm , a minimum of -18 cm and 

approached zero a t  l a r g e  R . 
W. KoZos and L. Wolniewicz, J .  Chem. Phys e 41, 3663 (1964) 

For t h e  worst  p o s s i b l e  case, H2 , KoZos and 

-1 -1 

12. 

13. See, e .g . ,  a) E. Merzbacher, Quantum Mechanics (John Wiley and Sonsg 

New York, 1961),  Chapter 1; b)  A. S. Davydov, Quantum Mechanics 

Pergamon P r e s s ,  London, 1965),  §25; c) D. R. Batesg Quantum Theory: 

I. Elements (Academic P res s ,  New York, 1961) ,  Chapter 7 ,  

14.  This  assumes t h a t  t h e  v i b r a t i o n a l  ene rg ie s  are a l l  expressed on 

t h e  same abso lu te  scale, such as relative t o  t h e  p o t e n t i a l  minimum. 

15. J. A. Coxon, J. Mol. Spec t ry .  ( in  p r e s s ) .  

16.  

1 7 .  

J .  A.  Horsley and R .  F. Barrow, Trans.  Faraday Soc, g, 32 (1967). 

The four  h ighes t  observed levels have r e c e n t l y  been reass igned  as 

v' = 50-53, i nc reas ing  t h e  expe r imen ta l i s t s  * numbering by one e 

18. R e  J. L e  Roy and R. B.  Berns te in ,  J. Mol. Spectry.  (1971, i n  press); 

15  ,I8 

see Sec t ion  3 . 2  

19.  W e  G e  Brown, Phys. Rev. - 38, 1179 (1931), 



2.2 11 

4 

2.2 RKR POTENTIAL FOR GROUND-STATE 1 2 ( X  'C+) 
g 

A d e t a i l e d  r e a n a l y s i s  of e x i s t i n g  spec t roscop ic  d a t a  f o r  ground- 

s ta te  I w a s  perfonned, y i e l d i n g  improved molecular cons tan ts  and RKR 

t u rn ing  p o i n t s .  This  work, r e p r i n t e d  below, was publ ished i n  t h e  

J o u r n a l  of Chemical Physics ,  Volume 52, pp. 2683-2689 (American I n s t i t u t e  

of Physics ,  New York, 1970) 

2 

Unfortunately,  when t h i s  work w a s  done t h e  b e s t  e x i s t i n g  va lues  of 

t h e  p h y s i c a l  constants' and the reduced mass of the n u c l e i  w e r e  n o t  

used i n  t h e  RKR c a l c u l a t i o n .  However, as d iscussed  i n  Sec t ion  2.1,  t h e  

repor ted  tu rn ing  p o i n t s  ( i n  Table  111, below) may b e  co r rec t ed  by 

mul t ip ly ing  them a l l  by t h e  f a c t o r  

2 

16.85803 63*437700}' = 1.0000160 ~ = c  16.85749 63.437697 
K (  co r rec t ed )  
K (  i n i t i a l )  

FOOTNOTES 

1. B. N. Taylor ,  W. H. Parker ,  and D. N. Langenberg, Rev. Mod. Phys. 

- 41, 375 (1969). 

J. He E. Mattauch, W. Thie l e ,  and A ,  H. Wapstra, Nucl. Physics  67, 

1 (1965). 

2. 
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ROBERT J. LEROY 

Thcoretical Clmiislry Znslilirle and Dcpartrrienl of Chenrislry, Uniwrdy  o j  Wisconsin, Madison, pisconson 53706 

A reanalysis of the spectroscbpfc data for ground-state iodine yields improved rotationgl constants and 
vibrational energies which are used to compute a new RKR potential. Polynomial repreGntations of the 
vibrational energies and rotational constants are presented which fit all the data to within the respective 
experimental precision of Verma and of Rank and Baldwin. ,New approaches are introduced for separately 
obtaining the rotational B ,  and D, constants and for estimating error bounds for computed RKR turning 
points. 

~ ~ ~ ~ O ~ ~ ~ T ~ ~ ~  
In 1960 Vermai reported some remarkable mea- 

surements of several series of uv-resonance emission 
doublets in the spectrum of fz, excited in an electric 
discharge. Although the final state of one of these 
resonance series has recently been reassigned as 
0,+(311) ,2 the remaining lines thoroughly catalogue the 
levels of ground-state X O,+('Z)IZ up to within 4% of 
the dissociation limit. Because of this remarkably 
complete set of data, the ground state of Iz has become 
almost a touchstone of RKK potential cdculations.lJ-6 

I n  the present work, the data for the ground state 
are handled somewhat differently than was done pre- 
viously, and discrepancies of up to 6.6 cm-t were found 
between the vibrational energies obtained here and 
the earlier results.' Since the reported ground-state 
RKK potential  curve^*^^-^ are based on tbis earlier 
energy spectrum,' all will be somewhat in error. 
Furthermore, most of these c u ~ l r c s ~ ~ ~ ~ ~  were calculated 
all the way to the dissociation limit by utilizing the 
energies of a set of levels which recently has been 
reassigned to another electronic state.2 An improved 
energy spectrum and RKR potential will be presented 
which are based on both the uv-resonance data' and 
the more accurate, but restricted (to v < 2 2 ) ,  green- 
line resonance data of Rank and Baldwin.6 

The raw data used in the p 
sisted of the green-line resonance doublets measured 
by Rank and Baldwid, and five of the six uv-reso- 
nance doublet series reported by Verma.l;* The former 
measurements are reIatively accurate, being reported 
to 0.001 cm-l, though they only describe levels v= 
0-22 .  On the other hand, while the uv measurements 
span the region from v=0-84, they were reported 
only to an accuracy of O.Of cm-l. Because of this dif- 
ference in precision, only the green-line data were 
used in determining the vibrational energies and rota- 
tional B, constants for v 5 2 2 .  In addition, all of the 
blended uv lines were omitted from consideration*, as 
well as three lines which the present analysis suggests 

ere misassigned.m 

Values of B,  constants are:obtained from the ex- 
perimental P-R doublet branth splittings 

;-. 

A v P - R ( ~ ,  Jr) = (4Jr+ 2 )  [Bv- 2(Jr2+Jr+ 1)Du], (1) 

where AVP-R(V, Jr) is the observed doublet splitting 
for vibrational level v ,  in the resonance series charac- 
terized by rotational quantum number J,. In the 
original analysis of the tiv data,' Vema tricd to 
obt;tin a polynomial representition for the con- 
stants by fitting the splittings for different .Ir directly 
to (1). However, in Ref. '7 it was pointed out that 
this approach is not very meaningful, because the 
effect of the U ,  values on the splittings is less than 
the experimental precision. On the other hand, sig- 
nificant information on the Us's can still be obtained, 
because while the effect of this term on the tlouhlet 
splittings varies as xY~XJ,", it9 effect on the vihra- 
tional energies varies as xJ$. Fdr the Jr= 87 resonance 
series this diff erence is particularly significant. 

they will affect the observed splittings only slightly. 
Hence, to a first approximation they can be replaced 
by any plausible set of trial values {D,,Cn)}, yielding 

&(n) =. [AvP-R(~;  Jr>/(4~~+2)]+2(9,2+J~+ f)D,(") 

Since the D, constants are known to be 

I 

=Bu-2(J,2+J,+1) (D,-D,("))l;yB,, (2) 
These estimates of the exact D, and B, values may 
then be applied to the data for resonance series Jr=J2 
to yield an apparent vibrational energy for level v,  
G~s(n)(v). Comparison of the apparent vibrational en- 
ergies obtained from the data for two different 
nahce series then yields improved estimates of 

is an average for the different 
resonance series contributing splittings at levels near v,11 
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FIG. 1. n, vs II for ground-ske X 12. - - -, curve from expression (5). 

These D,(tr+l) values may then be substituted into 
the first part of (2) to yield improved B,,('I+~) valucs, 

etc. The error in a D,(") value obtained after n 
such iterations is 

Clearly the sequence {D.(0), B,(O)} , (D8(1), B,(l)}, * - 0 

etc. will converge to the exact {D,, B,) as long as 

fG2(J,2+J,+ ~)~~/ (J~ '+J~+JI~+JJ  < 1. 

In applying (3) , apparent vibrational energies from 
the J2=87 resonance series were compared in turn 
to those yielded by each of the J1=49, 46, 25, and 23 
series, for all levels 0_<~_<82. '~ In applying (2), for 
v<22 only the green-line resonance splittings were 
used (Le., J,=34 only)la; therefore, in this region 
f T 0 . 3  and the (D.(n), B,(")) sequence will converge 
quite quickly. Analogously, for v 2  43 the J,= 87, 49, 
and 46 splittings are weighted about equally; hence 
fm0.85, and the sequence will converge here also. 
However, f a 2  for 22<v<43, since in this region only 
the Jr=87 splittings were measured with high pre- 
cision." Therefore, Eq. (3) was only applied to the 
data for v 5 2 2  and ~ 2 4 3 ,  while D,(") values in the 
intermediate region were obtained by interpolation. 

In applying the above stepwise convergence proce- 
dure, the individual values of D,(") and Be(") were 
always represented by polynomials in (v++) before 
utilizing them in the next step. The values of D,,(") 
were represented by 

- 
' 

D,(") = De("'+@,'"' (VS 4) + dz(n) (v+ +) ZS 

where De(") and were calculated from the other 
spectroscopic constants using the expressions given 
by I-Icrzberg,lB and was obtaincd from a lcast- 

J .  L E R O Y  

squares fit to the The  convergence of di$nj to 
an asymptotic value HRS used as the criterion of con- 
vcrgeuce for the { D,fn), 

The high accuracy of the green-line splitting for 
v <  22 relative to the UV splittings used for v >  22 ws 
retained in the polynomial representation of the A,(") 
constants. First, a second-order least-squares fit to the 
green-line data for v <  22 yicldeti xppsoximate values 
of the three lowest-order polynomial coefkients, Be, 
cye, and 7,. Next, the contributions of these terms 
[Le., Bc-ae(v+i )  +ye(v+ 4)2] were subtracted from 
the 79 individual U,(") v a h P  and the remainders 
fitted to an expression of the forin 

sequence. 

x (v) = 6,( v+ 4) 3+e,(v+94. 

Then the contributions of these initial 6, and E,, values 
were subtracted from the B,(n) values for v<22 and 
these remainders fitted to a quadratic, yielding im- 
proved estimates of I?,, ae, and ye. This cycle wa3 
then repeated until the polynomial coefficients con- 
vesged.1° 

The above { D.(n), B,(")) convergence procedure was 
applied three times, using polynomial representations 
of the B,(n) constants with maximum order M=3, 4, 
and 5, respe~tively.'~ In each case, the initial trial D, 
values were (D,(O)=Of. The results are shown in 
Table I. 

In the above manner, the following mutually con- 
sistent expressions were found to best represent the 
rotational constants B, and D, (in cm-') : 

B,= 3.7395 X lo-'- 1.2435 X lOd(~+$) 

+4.49sx 10-7 (a+ 4 ) ~ -  1 . 4 8 2 ~  i o - q v +  4) 3 

-3.64X lO-"(v++)', (4) 

DU=4.54X1W'+1.7X lO-"(v+%) 

+7X lO-"(v+$)2. ( 5 )  
Expression (4) represents the experimental B, values 
[obtained by substituting (5) into (I)]  within a 
standard error of f0.24X IO-* cm-1 for v < 2 2 ,  and. 
~k3.2>(10-~ for ~ 2 2 2 .  Figure 1 contrasts a plot of 
expression ( 5 )  with the final D, values obtained from 
expression (3). Utilizing the first term of (4) in the 

TABLE I. Results of Convergence using different 
polynomial fits to the B P )  values.1B ERR is the standard error 
of the D, representation. AI1 quantities are in cm-I. 

B, representation D, representation 

OrderM lOPXB, 104Xe, %QBX ERR ZQ@X& 

3 3.7397 1.2519 6.7 0.0048 
4 3.7395 1.2435 4.4 O.W& 
5 3.7399 1.2GS2 . 4.4  0.mMlo 
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TABLE TI. Absorption l i e s  exciting observed resonance series. R(33) is for the green-line seriesfi and the others for the uv series.' 

Line R(33) P(47) W 3 )  R(24) 

v, (cm-1) 18 30'1.487 54 633.216 54 633.155 54 633.203 54 633.182 

usual 
distance of REQ= 26657 A for ground state 1 2 .  

one obt@s an equilibrium internuclear 

THE VIBRATIONAL CONSTANTS 

A shift of B ,  values for v>22 generated from ex- 
pression (4) by one standard error, f 3 . 2 X  lW4 cm-l, 
changes vibrational energies obtained from the reso- 
nance series characterized by J r =  87 by x F 2 . 5  cm-I, 
while affecting energies obtained from the other (uv) 
series by between F0.15 and 30.8 cm-1 (correspond- 
ing to Jr=22 and 49, respectively). In view of this, 
the J,=87 data were not utilized at  all in the de- 
termination of the vibrational spectrum and constants 
for the ground state. This means that the highest 
level fitted is v=82, although the highest level ob- 
served is v =  84. 

Utilizing esprcssions (4) and (5), a vibrational 
ladder may be constructed from the data for e:tch of 
the fivc remaining rcsoniince series, J,=40, 46, 34, 25, 
and 22. Unfortunately, the emission lines correspond- 
ing to the inverse of the five molecular transitions 
exciting the various series are masked by the intense 
atomic lines. Also, the atomic emission and molecular 
absorption lines have a significant width,m so that the 
peaks of the latter need not coincide with those of the 
former. 

In the present work, improved values for the peak 
energies of the exciting molecular transitions were 
obtained by shifting the five independent vibrational 
ladders so as to minimize disagreement:' yielding the 
frequencies given in Table 11. A weighted average 
value for the 4 uv series is 54 633.18 cni- . This lies 
bctwccn the center of the alomic line which is thc 
source of the uv light, 54 633.46 cni-1,22 and the value 
Y,= 54 632.93 cm-I used in the original analysis1 as 
the single excitation frequency for all 6 uv resonance 
series. 

The above procedure, combined with the method 
of obtaining the D, values,12 yields a fairly high degree 
of internal consistency between the results for dif- 
ferent resonance series. The statistical scatter in tbe 
B, values for v>22, f3.2X10-* cni-', could give rise 
to differences of F0.6 cm-' between vibrational en- 
ergies calculated from the Jr=49 and 22 series. How- 
ever, the disagreement actually found is always less 
than 0.15 cm-l for v<74, white for 74_<v<82, where 
the rotational data is least reliable, the spread never 
cxccctls 0.5 cin-1, 

Vibrational energies obtained by 3pplying exprcs- 

sions (4) and (5) to the data were fittcd to a poly- 
nomial in (v+J)  to yield the customary representation 
(we,  w . x . ~  0 e etc.), An iterative procedure was used 
to obtain a single self-consistcnt set of constants 
which reflected the higher accuracy of the green-line 
data used for v_<22. The approach was similar to that 
used for obtaining the B, representation. The coeff- 
cients of terms of order up to five were based mainly 
on the v<22 data and those of order six to nine 
mainly on the uv data (22_<v_<82). In  addition, an 
external constraint23 was applied to force the vibra- 
tional constants to yield roughly the known dissociation 
limit? 

The final expression obtained for the vibrational 
energies isZ4 (in cm-1) 

G(v)  = 2 14.5481 (v+ 3) - 0.616259 (v+ 3) 
+ 7.507X 10-6(v++)a- 1.263643X W 4 ( v +  :)4 

+6.198129X lW6(v+~)6- 2.0255O75X 10 "(v+:)& 

+3.9662824X ~O-@(V+ $)7- 4.6346554X ~ O - " ( S +  4)' 
+ 2.9330WX 1 @-I3( ~4-4)'- 7.61OOOX 10-"( ~ + 4 )  lo. 

(6) 
This fits the 30 green-line data for 71222 with a 
standard error of f0.0046 cm-1, and the 146 ( w )  data 
for 22<v_<82 with a standard error of f0.14 cm-1, 
within the ranges of the respective experimental un- 
certain ties. However, the extrapolated eigenvalues are 
probably not reliab*le much beyond v=85. 

RKR POTENTIAL FOR GROUND STATE 1 2  

I i I i I i  c;ilculidions reported here were perlon11c.d 
using a slightly modified version 01 the computcr 
program reported by %are.2G This program was prc- 
viously tested and found to yield a potential which 
reflects the input vibrational energies and rotational 
Bo's with an accuracy better than that warranted by 
the data used here?6 Values of the physical constants, 
taken from Cohen 'and DuMond," yielded 

fi/(4~~p)=16.85749/p ( ( A  
where pr63.4377 amu28 is the reduced mass of the 
two nuclei?* 

A check of the plausibility of the potential by 
evaluating its first and second derivatives ovcr the 
mngc of the inncr turning pointsza showcd thc second 
dcriviitives to be negative for 0 5 6 ,  This must be 
due to inaccuracy in the B ,  constnnts in this region, 
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TADLE 111. RKR turning points (in nngstroms) for ground-state 11. The eriergies G(u) arc in cm-'. 

V G(V) Ri ( ' ~ 1 )  XdV) V C(l!) XI (71) 

0 107.120 
1 320.435 
2 532.515 
3 743.3.56 
4 952.952 
5 1 161.296 
6 1368.379 
7 1 574.195 
8 1 7i8.731 
9 1 981.980 

10 2 183.932 
11 2 384.577 
12 2 583.905 
13 2 iSl.904 
14 2 978.564 
15 3 173.874 
16 3 367.822 
1 7  3 560.397 
is 3 751.586 
19 3 941.377 
20 4 129.756 
21 4 316.709 
22 4 502.223 
24 4 868.87 
26 5 229.58 
28 5 584.20 

2.61 784 
2.58501 
2.56348 
2.54653 
2.53228 
2. 51983 
2. SO87 1 
2.49862 
2.48933 
2.48072 
2.47268 
2.46.5 1 1 
2.45796 
2.451 19 
2.44473 
2.43857 
2.43268 
2.42702 
2.42159 
2.41635 
2.41130 
2.40643 
2.40172 
2.3927 
2.3843 
2.3764 

2.71750 30 
2.75807 32 
2.78741 34 
2.81214 36 
2.83419 38 
2,85544 40 
2.87339 42 
2.89134 44 
2.90850 46 
2.92502 4,9 
2.94101 50 
2.95655 52 
2.97172 54 
2.94656 56 
3.001 13 58 
3.01545 60 
3.02958 62 
3.04352 64 
3.05732 66 
3 1070% 
3.08454 

68 
70 

3.09801 72 
3.11140 7 1  
3.1380 76 
3.1645 79 
3.1910 82 

5 932.60 
6 274,hO 
6 610.06 
6 938.78 
7 2Ml.56 
7 575.21 
7 882.51 
8 182.20 
8 474.05 
8 757.78 
9 033.11 
9 299.72 
9 557.29 
9 805.50 

10 043.98 
10 272.39 
10 490.37 
10 697.S7 
10 893.66 
11 078.35 
11 251.40 
11 412.60 
11 561.84 
11 699.11 
11 882.75 
12 040.40 

2.3689 
2.3618 
2.3550 
2.3487 
2.3427 
2.3370 
2.3316 
2.3265 
2.3217 
2.3171 
2.3128 
2.3087 
2.3049 
2.301 2 
2,2978 
2.2946 
2.2916 
2.2888 
2.2862 
2.2837 
2.2815 
2.2794 
2.2775 
2.2758 
2.2734 
2.2716 

3.2176 
3.2443 
3.2713 
3.2986 
3.3264 
3.3.546 
3.3835 
3.4132 
3.44.36 
3.4751 
3.5076 
3.541 3 
3.5765 
3.61 33 
3.6520 
3.6928 
3.7360 
3.7819 
3.8310 
3.8837 
3.94w 
4.0021 
4.0689 
4.142 
4.264 
4.406 

since they largely determine the absolute positioning 
of the pair of turning points for a given level, while 
the distance between a pair of turning points depends 
only on the relatively more accurate vibrational 
spacings. However, a good approximation to the po- 
tential may still be obtained by adding the relatively 
more accurate differences between the pairs of turning 
points [R2( v )  - R1 ( v ) ]  to inner turning points ob- 
tained by extrapolation from the region in which the 
two derivatives are acceptable. Consideration of the 
derivatives of the repulsive branch of the potential 
for 225~5.50  showed that the best (integer) inverse- 
power fit to it corresponded to R-12.30 The expression 
A/R*+B was then fitted to the computed inner 
turning points at v=49 and 50, yielding 

V ( R )  ~2.921166X 108/R12-3438.00. (7) 

Expression ( 7 )  was then used with expression (6) to 
generate "extrapolated" inner turning points R1(v) for 
v>50 (i.e., R<2.313 A ) .  The differences between the 
extrapolated and RKR turning points increased from 
0.00016 A at v=60, to 0.0020 a t  v=70,  to 0.0094 at  
v=82. Because of the magnitude of this correction 
and the steepness of the potential, the probable errors 
in the resulting inner turning points are insignificant. 

Table 111 gives the RKR turning points computed 
from expressions (4) and (6) for O_<v_<SO, and the 
adjjvsted turning points for v> 50 obtained by com- 
bining the extrapolated Rl(v) values with the com- 
puted quantities [R2(s) - & ( v ) ] .  The differences 
[R2 ( v )  - R1 ( v )  ] depend solely on the vibrational spec- 
trum and have approximate error bounds of f0.8X 

110-6 A for levels 0 5 2 2 ,  and bounds ranging from 
f0.0003 to f0.003 as v increases from 23 to 82. 
On the other hand, the ;werage of a pair of turning 
points 4[&(v)+R2(v) ]  depends mainly on the less 
accurately known B, constants. These averages have 
approximate error bounds of f0.0009 A Or,r 0 5 2 2 ,  
and bounds ranging from 0.01% to f0.028 A for v in- 
creasing from 23 to 8Z3l These bounds were obtained 
by applying the statistical standard errors of the fit5 
of (4) and (6) to the data, to the expressions derived 
in the Appendix. It is important to note that the 
accuracies of the turning-point differences are signifi- 
cant, despite the telatively large uncertainties in the 
average values. 

Consideration of the derivatives of the outer branch 
of the WMR potential for v=80-82 shows that in this 
region it is converging to the dissociation limit as 
R-8-4,.30 On the other hand, the theoretical asymptotic 
long-range behavior of the potential for this state is 
R-fi.2 Therefore, the experimental results do not ex- 
tend far enough to either confirm the long-range 
behavior or yield a. value €or the C*.@ 

BXSCUSSIOR 

Vibrational energies generated from expression (6) 
differ significantly from those obtained by 
his original analysis of the uv spectrurn.1 
spacings (see Table VI of Ref. yield energies rela- 
tive to o=O which are too high. The error ranges 
from 0.2 cm-* at v =  10 up to 6.6 cm-1 at w= 54 and 
then decreases to 4.3 cm-1 by a=82. Verrna appears 
to have based his vibrational spectrum on the spacings 
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TABLE IV. Cam ison of cnlculated and observed disngreemcnts with Zare’sa turning points. Tn all cnm, a rcpresenter 
subtmction of trpresent value from the previous value. A L I ~ ~  nnd B,  are in cm-1, while lengths nre in angstroms. 

’ f@)<b[Rd~)-&(~)  J f@%4KRa(g) +%(of] 

I) -8(AG,t*) W X & B ,  From (All and (A3) Obs .From (A21 and (A4) Obs 

9 0.07 -2.4 0.8 0.0 8. -2.2 
49 -0. 17 -1.0 -2.9 -2.4 4, 0.3 
29 -0.24 -2.4 -5.7 -4.3 10. 11.4 
39 -0.20 -6.9 -6.3 -7.5 31. -1.6 
49 -0.14 -14.2 -5.9 -6.4 65 -3, 
99 0.21 -23.2 12.5 1.0 125. 9.7 
69 -0.02 -31.9 -1.8 I 0.6 200. 60.0 

i 

I of the 17 pairs of adjacent levels in the P branch of 
resonance series J,.= 49. On the other hand, the present 
analysis fits 176 vibrational energies directly. The dis- 
crepancies between the results of these two approaches 
shows how a relatively large error can accumulate 
when attention is focused on the individual vibra- 
tional spacings, rather than on the vibrational ladder 
as a whole. These errors in the previously reported 
vibrational spectrum’ are reflected in the previous RKR 
potentialPJ96 in two ways. First of all, the differences 
[R2(v)-Rp(v)] are slightly in error (see Appendix) ; 
and more seriously, the turning points are correlated 
with incorrect energies. 

The shift of the computed turning points above 
e=50, in the present work, has implications with 
regard to the accuracy of the B., D., and G(u) rep- 
resentations [expressions (4)-( 6)]. These shifts in the 
turning points actually correspond to small changes 
in the B, values in this region. To be entirely con- 
sistent, new B,  values corresponding to the shifted 
turning points should have been derived and applied 
to yield new D, values and vibrational energies. The 
maximum effect, occurring at  v=82,  would be a de- 
crease of 1.04X 1O-a cm-l (0.5%) in &, and a con- 
comitant decrease of 1OX 1O-O em+ (19%) in DSZ and 
increase of 0.18 cm-1 in G(82). owever, aside from 
the change in &, these changes are effectively within 
the statistical standard error of the representations, 
and their effect on the turning point differences 
[ & ( v ) - R ~ ( v ) ]  will be well within the stated bounds. 
Furthermore, these errors will drop quite sharply for 
lower vibrational levels and should be completely 
negligible for levels below ~ 9 4 .  

Rotational B, constants generated frqm (4) also 
cliff er with those reported previously.’J While the 
discrepancies are quite or the lower levels, 
they increase steeply ab0 A t  o= 82 the present 

I B,=Q.02190 cm-* is 1.4 than Verma’s value 
and 5.7% larger than that of Rank and 

’ 

’ 

*I ’ I 

I 

most sensitive to errors in 
paragraph suggests that the p@en 
by %0.5%, it will still be mofe 
yielded by the previous analyses. 

The author would like to thgnk Professor 
Bernstein for his encouragement and support, 

ob 
expressions 

[G(u) - C ( ~ ) 3 * ’ 2  dx 
12 

= 4KRp(.a)l”- caPz(~)J-:3, 1 

where Bs and G(z) are the IO 
vibrational energy for level t. 
proximation9 errors 8ES in G(x) yield qn apparent 
value of f( e) : 

f 

k 

1 

p -  

Similarly, combining this effect with errors 6Bs in 
rotational constant B,, the apparent value of g(s) 

.. 
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The average of a pair of turning points is 

i[R, ( v )  +Rz(o) ] = f ( v >  f1+f(~>-1s(~)-Ll"2, 
where the portion in parenthesis is dominated by the 
last tern]. Thcrcfore, the errors in the difference and 
average of the turning points calculated for level D are 

6CRdV) - & ( v )  1 
% $ ( ~ B / [ G ( D ) - G ( ~ ) ] )  [ & ( ~ J ) - . & ( D ) ] ,  (Ai) 

and 

~ ~ ~ G ( ~ ) + R ~ ( z K I  
W - f ( 6 B z / B , )  $[RI(v) +Rz(v)I. (A21 

In  cases where the errors 6Ez and 6B, are small, the 
average values in (Al)  and (82) may be replaced by 

(A3) (GE,/[G(v) - G(%)] )=  - 6 (AG,-i/z) /AGo-i/a, 

and 

Also, approxiniate turning point error bounds are ob- 
tained if the numerators on the right-hand sides of (A3) 
and (A4) may be replaced by (6E,) and (6B,). 

Expressions (Al)-(A4) were tested by comparing 
the turning points calculated in the present work 
with those reported by ZareP The latter were cal- 
culated using essentially the same computer program 
as was used here, and are probably the most accurate 
previous However, Zare utilized Verma's 
reported vibrational spacings and B, representation 
which are believed to be slightly in error (see Discus- 
sion, above). The comparison is shown in Table IV. 
For the differences [R~(s) - R l ( v ) ]  the agreement is 
quite good except for ~ = 5 9  and 69, and there the dis- 
crepancy is anomalously large only because 6( AG,-II~) 
changes sign a t  v=55 and at  v=68. On the other 
hand, there is no readily apparent reason for the 
relatively large discrepancies between the calculated 
and observed errors in the turning point averages, 
other than the fact that Eq. (A4) is a relatively much 
worse approximation than is Eq. (A3). 

* Research sumorted bv National Science Foundation Grant 

( 6 B z / B z ) ~ 6 B , / B v .  (84) 

GP-7409 and Nitional Aeronautics and Space Administration 
Grant NGL 50-002-001. 
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sed bccause the 
values of 4 and 

the uncertainties 
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atomic line). The remainder of the broadening must be due to 
collisional effects and Stark broadening in the discharge. Despite 
these effects, Vcrma was able to measure the peak positions of 
the molecular tines with an accuracy of &0.02 c i r l  for sharp 
nonoverbpped lines, and from f0.07 to f0.14 cni-1 for others.' 

Pi In this procedure, the uv data for the whole range O < v 1 8 2  
were used, On the other hand, the uv data for v<22 were omitted 
from the analysis when the vibrational energies were being 
obtained. 

C. C. Kiess and C. W. Coriiss, J. Res. Natl. Bur. Std. 63A, 1 
(1959). 

21 R. J. LeRoy and G. Burns, J. Mol. Spectry. 25, 77 (1968). 
N The numbers of significant digits in the constants were chosen 

* so that Eq. (6) would reproduce energies up to a=82 with a 
precision of f0.01 ern-', and energies up to v=22 with a precision 
of f0.001 cm-1. 

z6 K. N. Zare, University of California Lmrence Radiation 
Laboratory Rept. UCRL1092.5, 1963. 

= A  given RKR potential may be tested by substituting it. 
into the radial Schrodiiger equation, solving exactly to get the ' 
vibrational energies C(v) and expectation values (v 1 I a) ,  
and comparing these to the energies and B,  constants used as 
input in the RKR computations. Zare tested his program in this 
manner6 using Verma's results for the ground state of 1% as the 
test case. He found that for the first thirty levels, the deviations 
of the vibrational energies were 50.09 cm-J, while the deviations 
in, the B ,  values were < 1. X 10-6 em-'. 

27 E. K. Cohen and J. W. M. DuMond, Rev. Mod. Phys. 3T9 
537 (19G.5). 

Iiandbook o j  Cbetiiisfry a d  Physics, R. C. Weast, Ed. 
(Chemical Rubber I'uhl. Co., Cleveland Ohio, t966), 47111 ecl. 
ID Using inexact values of the hysicai constants can have a 

real eflcct on the accuracy (througfi not the precision) of the RKR 
calculation. It was recently shown [Re J. LeRoy and R. B. Bern- 



e 

- 2 .2  18 
1 M O L E C U L A R  C O N S T A N T S  O F  G R O U N D - S T A T E  X O U j N E  2689 
1 
i 
! based on the data for the levels which have recently lieen re- ' assigned to the 0,' (*rI) state. Furthermore, even ignoring this 
j reassignment, they appear to have bben rather inconsistently 
! ohtainecl. Vetma' ohtainetl the asymptotic C6 from his RKR 
1 curve in the interval 4.6<K<6.4 A, while his potential for 

6.4<R<8.8 A converges significantly more slowly than his 

I , Ca/K'. On the other hand, the deviation between the observed 
(KKR) and calculated (based on their Cs> curves of Richards ' and Barro+ shows that their RKR potential has distinctly sharper 
curvature than is explained by their Cs. 

' avera e values +[Rt(v)+&(w)J. 8 As reported reviously,' the G(u) values given in Table VI1 
of Ref, 1 are all 

stein, J. Chem. l'hys. 49, 4312 (19686; that for the inverse 
problem of obtaining eigenvalues from a 3iven potential, different 
authors obtained results differing by up to 0.7 c n P  for the eigen- 
states of Hz, on this account. Ikrthermore, use of the atomic 
reduced inass for Hz rather than the nuclear reduced mass 
introduced errors of over 6. crn-l. 

a. The potential was fitted to the expression A / R n f B .  
"The actual errors in the [ R l ( w ) i R ~ ( w )  J values are probably 

somewhat smaller than is indicated by these bounds. The results 
in the Appendix suggest that this may be especially true for the 

T i e  previously reported experimental'' ce values1+* were ton small. 

* 
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2 , 3  LONG-RANGE POTENTIALS OF B r 2 ( B  'niU) AND CR2(B %iU) FROM COMBINING 

RKR RESULTS -WITH THEORY 

Improved RKR p o t e n t i a l s  f o r  t h e  B( states of B r 2  qpd CR2'  
. D  

.- 9. extending t o  w i t h i n  a few cm 

been c a l c u l a t e d  by Coxpn?. They are combined h e r e  wi th  the  t h e o r e t i c a l  

C5 p o t e n t i a l  cons t an t s  t o  y i e l d  e.stimates of t h e  c6 cons tan ts  f o r  t h e s e  

states. 

of t h e  d i s s o c i a t i o n  l i m i t ,  have , recent ly  , 

The approach used i s - a n a l o g u u s  t o  thal; app l i ed  by Stwal ley  t o  

1 +  2 C ) state of Mg2. . t h e  ground (X 
g 

3 +  It i s  t h e o r e t i c a l l y  known t h a t  f o r  t h e  B (  TI ) , -s ta te  halogens t h e  ou 
3-5 - 1 ,  

long-range p o t e n t i a l  may be  expanded as: 

..* V(R) = D - C5/R5 - C6/R6 - Cg/R 8 - 

5 , 7 , 8  . Values of t h e  C 

and those  f o r  t h e  states i n  ques t ion  are g iven  i n  Table E. 

C ' s ,  t h e  C and C d i s p e r s i o n  ooe f f io i enes  f o r  Chese molbcular states 

constants may b e  r e a d i l y  ca l cu la t ed  f o r  most s p e c i e s ,  5 
Like  t h e  

5 6 8 
I' . 

are a l s o  almost c e r t a i n l y  p b s i t i v e  (attractive), a l though they are much 

harder  t o  o b t a i n  t h e o r e t i c a l l y ,  

- 

10 A ques t ion  r a i s e d  by t h e  u s e  of 

Eq. (1) is whether t h e  tu rn ing  p o i n t s  considered Ife a t  s u f f i c i e n t l y  

l a r g e  i n t e r n u c l e a r  d i s t ances  f o r , i t  t o  b e  v a l i d .  

d i scussed  by Stwal ley  i n  r e l a t i o n  t o  ground s ta te  Mg2e2 H e  poin ted  out  

%is po in t  has  been 

3 4 -  t h a t  f o r  t h e  

and h e  suggested t h a t  i t  should no t  b e  used i n  t h i s  reg ion  f o r  any 

b (  Cu)  s t a te  of H2, Eq. (1) breaks down f o r  R 5 P 
N 

c. Assuming h i s  c r i t e r i o n  is  s u f f i c i e n t ,  t h e  present  t rea tment  ,. 
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TABLE 1 

34- Asymptotic p o t e n t i a l  c o e f f i c i e n t s  of t h e  B( II )-state halogens,  ou 

I ( t h e o r e t i c a l ) "  ' (empir ica l )  

1.44 lo5  0.42 (5 0.02) x l o 6  
1.01 (4- 0.24) x l o6  2.39 x 10 5 

CR2 

Br2 

a) See Footnote 7 e 

. b) The u n c e r t a i n t i e s  h e r e  r ep resen t  95% s t a t i s t i c a l  confidence 

i n t e r v a l s  on t h e  s l o p e s  of t h e  l i n e s  through t h e  h ighes t  fou r  p o i n t s .  

c) From Figs .  1 and 2. 

i s  v i a b l e ,  s i n c e  t h e  ou te r  RKR tu rn ing  p o i n t s  f o r  t h e  l e v e l s  considered 

a l l  l i e  i n  t h e  reg ion  5 . 5  R 9.5 8' . '  
It has  r e c e n t l y  been shown12 t h a t  t h e  d i s t r i b u t i o n  of h i g h e s t  

observed v i b r a t i o n a l  levels for each of t h e  B-state halogens corresponds 

t o  t h e  ou te r  branch of t h e  p o t e n t i a l  i n  t h i s  r eg ion  be ing  dominated 

by t h e  lead ing  (Rm5) term i n  Eq. (1) e On t h e  o t h e r  hand, t h e  tu rn ing  

po in t s  i n  ques t ion  are not  p a r t i c u l a r l y  l a r g e  (R < 9 ,2  8) so  t h a t  it 

seems q u i t e  p o s s i b l e  t h a t  some of t h e  higher-power terms a l s o  con t r i -  

b u t e  s i g n i f i c a n t l y .  

f i t  of t h e  o u t e r  t u rn ing  p o i n t s  t o  Eq . ( l ) ;  however, t h i s  approach i s  

-. 

This  would appear  t o  sugges t  a d i r e c t  l eas t - squares  

i 

no t  adv i sab le  f o r  a number of reasons .  One of t h e s e  is  t h e  

unce r t a in ty  as t o  how many of t h e  terms i n  t h e  expansion of 
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Eq. (1) should 

is accentuated 

s o  t h a t  i n  t h e  

a c t u a l l y  be  r e t a i n e d  i n  as’given case, 

by the f a c t  t h a t  the competing powers 

This  d i f  f i c u l t y  

are f a i r l y  similar,  

absence of d a t a  spanning a very  wide interval ,  r e l a t i v e l y  

small e r r o r s  i n  t h e  tu rn ing  p o i n t s  could g r o s s l y  d i s t o r t  t h e  apparent  

re la t ive con t r ibu t ions  of t h e  d i f f e r e n t  terms. A more s e r i o u s  problem 

is t h a t  t h e  ou te r  t u rn ing  po in t  f o r  t h e  h ighes t  observed level is  rela- 

t i v e l y  much less a c c u r a t e  than  those  f o r  somewhat deeper levels,13 whi l e  

hav:ing a dominant v o i c e  i n  t h e  determinat ion of t h e  re la t ive importance 

of t h e  con t r ibu t ing  terms. 

I n  t h e  p re sen t  ease t h e  d i f f i c u l t i e s  i nhe ren t  i n  a gene ra l  least-  

5 squares  f i t  t o  Eq. (1) may b e  avoided because a c c u r a t e  t h e o r e t i c a l  C 

cons tan ts  are known ( see  Table I). ’ Following t h e  approach 

- 1  vs 

outer  RKR tu rn ing  po in t s  f o r  t h e  h ighes t  observed v i b r a t i o n a l  l e v e l s  

[R2(v)”]-6 were made, where E(v) are t h e  ene rg ie s  and R (v) Coxon’s 2 7 

of B-state B r 2  and CR These are shown i n  P igs .  1 and 2, Considera- 2’  

t i o n  of Eq. (1) shows t h a t  t h e  l i m i t i n g  s l o p e s  of t hese  p l o t s  y i e l d  

t h e  C c o e f f i c i e n t s ;  t h e  va lues  thus  obtained are l i s t e d  i n  Table  I 

toge the r  wi th  t h e  C, c o e f f i c i e n t s  on which they  are based. I n  both 

6 

cases t h e s e  

obtained in .  

of y i e ld ing  

through t h  e 

mate of t h e  

J 

s lopes  w e r e  cons t ra ined  t o  y i e l d  t h e  d i s s o c i a t i o n  ene rg ie s  

Refs .  (6) and (12)$ s i n c e  t h e  p l o t s  d i d  no t  appear capable  

more r e l i a b l e  va lues .  I n  p a r t i c u l a r ,  a b e s t  s t r a i g h t  l i n e  

f o u r  h i g h e s t  p o i n t s  f o r  B r 2  i n  P ig .  2 would y i e l d  an esti- 

d i s s o c i a t i o n  energy s i g n i f i c a n t l y  l a r g e r  than  t h a t  obtained 

i n  Ref, (12) when t h e  Rm5 term was ignored and t h e  p o t e n t i a l  assumed t o  

b e  pure ly  R-6e18 This  is q u i t e  unacceptable ,  and sugges ts  t h a t  t h e r e  
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The s o l i d  l i n e  i s  a leas t - squares  f i t  t o  t h e  four  h ighes t  p o i n t s ,  Constrained 

t o  have i t s  i n t e r c e p t  a t  t h e  prev ious ly  obtafned6’l2 va lue , \of  D (horfzontaE . 

dashed l i n e )  

- 
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The s o l i d  S i n e , i s  a leas t - squares  f i t  t o  the fou r  h ighes t  p o i n t s ,  con- 

s t r a i n e d  t o  have kts  gn te reep t  a t  t h e  prev ious ly  ~ b t a i n e d " ' ~  v a h e  

of D ( h o r i z o n t a l  dashed l i n e ) ,  7 
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are s m a l l  e r r o r s  i n  t h e s e  RKR tu rn ing  po in t s .  13”’ 

p o i n t s  f o r  t h e  deeper levels f a l l  below the l ines i n  F igs ,  1 and 2 ,  

i n d i c a t i n g  t h e  inc reas ing  importance of t h e  R-8 and o t h e r  terns. 

A s  expected, t h e  

I n  a d d i t i o n  to  t h e  inhe ren t  in terest  i n  t h e  C cons t an t s  i n  Table I, 6 
a most s i g n i f i c a n t  f e a t u r e  of t h e  present  resul ts  is  i n  t h e  ease wi th  

which they  were obtained.  While t h i s  is due i n  l a r g e  p a r t  t o  the*sim- 

p l i c i t y  of c a l c u l a t i n g  t h e o r e t i c a l  C coeff i c i e n t s  5 3 7 9 8  i t  a l s o  a t tes ts  5 
2 eo t h e  u t i l i t y  *of S twal ley’s  g raph ica l  method. These resu l t s  

impl ica t ions  concerning t h e  method presented  i n  Chapter 3, and 

w i l l  b e  d iscussed  f u r t h e r  i n  Sec t ion  3 . 3  e 

a l s o  have 

hence 
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of Mg2", Chem. Phys. L e t t .  (1970, t o  b e  publ ished)  e 

The d e r i v a t i o n  of t h i s  express ion  is d iscussed  i n  a number of 

sources ,  inc luding  Refs .  (4-5)  a The lowest-power term con t r ibu t ing  

t o  Eq. (1) is determined by t h e  n a t u r e  of t h e  atoms t o  which t h e  

molecular s ta te  d i s s o c i a t e s ;  a summary of t h e  t h e o r e t i c a l  r u l e s  

governing t h i s  is given i n  Appendix B of Ref. ( 6 ) .  

J. 0. Hi r sch fe lde r ,  C .  F. Cur t i s s ,  and R. B .  Bi rd ,  Molecular Theory 

I-- of Gases and Liquids  (John Wiley and Sons, Inc., New York, 19641, 

P a r t  U E .  

T. Y. Chang, Rev. Mod. Phys. - 39, 911 (1967). 

R. J. L e  Roy and Rb B.  Be rns t e in ,  J .  Chem. Phys. 52,  3869 (1990); . 

see Sec t ion  3*Y.* 

It w a s  shown by Knipp t h a t  i n t e ra tomic  C 

expressed as t h e  product of an angular  f a c t o r  and t h e  expec ta t ion  

value 

s h e l f  of each of t h e  i n t e r a c t i n g  atoms. Knipp a l s o  presented  

va lues  of t h e s e  angular  f a c t o r s  and approximate expec ta t ion  va lues  

f o r  a few systems, 

f a c t o r s  considerably , and Fischer '  r epor t ed  Hartree-Fock va lues  of 

t h e  necessary  expec ta t ion  va lues  f o r  a l l  atoms from H e  t o  Rn. 

I- 

8 c o e f f i c i e n t s  may be  5 

of t h e  square  of t h e  e l e c t r o n  r a d i i  i n  t h e  u n f i l l e d  va lence  

8 

Recently,  Chang' extended t h e  t a b l e s  of angular  
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8. 

9. 

J, K. Knipp, Phys. Rev. - 53, 434 (1938). 

C. F. Fische r ,  Can, J. Phys. g9 2336 (1968) 

LO. The second-order pe r tu rba t ion  theory  express ions  f o r  in t e ra tomic  

d i s p e r s i o n  f o r c e s 4  show t h a t  i n  t h e  present  case, where t h e  mole- 

e u l a r  state d i s s o c i a t e s  t o  one ground ( P ) and one e x c i t e d  ( P 

atom, t h e r e  is only one r e p u l s i v e  c o n t r i b u t i o n  t o  each of t h e  C 

and C8 terms. I ts  magnitude depends on a ma t r ix  element coupling 

t h e  P and P atomic states3 t h i s  i s  known t o  b e  very  small 

because of t h e  forbiddenness  of t h i s  atomic t r a n s i t i o n ,  and it i s  

2 2 
1/21 3 f  2 

6 

2 2 

11 
312 1 f  2 

c e r t a i n  t o  b e  overwhelmed by t h e  con t r ibu t ions  from terms correspbnding 

t o  allowed t r a n s i t i o n s  t o  h ighe r  e x c i t e d  states,  

11. a)  R,  H. Garstang, J. R e s .  Natl, Bur,  Std.  ( U , S , )  - 68A, 6 1  (1964); 

b )  

R .  J. Le Roy and R .  B .  Berns te in ,  “Dfssoc ia t ion  Energies  and Long- 

Range P o t e n t i a l s  of Diatomic Molecules from Vib ra t iona l  Spacings: 

The Halogens,” J. Mol. Spectry,  _c 37 (1971, i n  p r e s s ) ;  see Sec t ion  

3.2.  

This may b e  seen  from cons ide ra t ion  of t h e  two quadra tures  r equ i r ed  

R. J. Donovan and D. Husain, Chem. Rev, I_ 70, 489 (1970),  

12. 

13. 

L f o r  t h e  c a l c u l a t i o n  of a p a i r  of t u rn ing  p o i n t s  ( s ee  Eqs. (1-3) i n  

Sec t ion  2 ,1> .  

s i n g u l a r i t y  at t h e  energy of t h e  level whose tu rn ing  p o i n t s  are 

be ing  c a l c u l a t e d ,  and hence t h e  l a r g e s t  con t r ibu t ion  t o  t h e  i n t e g r a l  

comes from t h i s  neighborhood, 

p re sen t s  L i t t l e  d i f f i c u l t y ,  as a smooth i n t e r p o l a t i o n  between t h e  

d a t a  f o r  t h e  surrounding levels should y i e l d  h i g h l y  a c c u r a t e  i n t e -  

The in tegrand  of each always has  an i n t e g r a b l e  

For a l l  b u t  t h e  h ighes t  l eve l  t h i s  
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grands a t  t h e s e  s i n g u l a r i t i e s .  However, f o r  t h e  very h ighes t  

observed l e v e l , t h e  absence of d a m  f o r  y e t  h ighe r  levels in t roduces  

a r e l a t i v e l y  l a r g e  unce r t a in ty  i n t o  t h i s  i n t e r p o l a t i o n ,  and hence 

i n t o  t h e  r e s u l t i n g  turn ing  p o i n t s  

A po in t  f o r  v = 32 w a s  omitted from P ig ,  l because of i ts  completely 14 .  

unreasonable  disagreement wi th  t h e  o t h e r s ;  it would have l a i n  

0.8 cm" below t h e  po in t  f o r  v = 31, a t  an a b s c i s s a  of 1 0 6 / K 6  = 0,07. < 

This omission is  j u s t i f i e d  on t h e  b a s i s  of p o s s i b l e  e r r o r s  i n  t h e  

RKR c a l c u l a t i o n  f o r  t h e  h ighes t  level,13 and probable e r r o r  i n  t h e  
- 

d a t a  on which t h e  c a l c u l a t i o n  w a s  based,  

v a t i o n  of t h i s  level is i n  t h e  t h e s i s  of Richards,15 and i t  was no t  

The only r epor t ed  obser- 

observed i n  t h e  later ana lyses  of Refs.  (16) and (17) The d i s -  

crepancy is  q u a l i t a t i v e l y  t h a t  expected i f  t h e  v = 31-32 level 

spacing used i n  Coxon's' RKSF. c a l c u l a t i o n  w a s  too  small, as is 

suggested by t h e  f a c t  t h a t  i t  i s  33% smaller than t h a t  p red ic t ed  

i n  Ref. (6). 

15. W. e. Richards,  Ph.D, t h e s i s ,  Oxford Univers i ty  (1962). 

16.  A .  E. Douglas, Chr, Kn. M#ller, and B.  P .  S t o i c h e f f ,  Can. J, Phys. 

- 41, 1174 (3.963). 

19. M. A .  A .  C l y n e  and J. A .  Coxon, J. Mol. Spectry.  33, 381 (2970). 

18. 

- 
This  suggested a $ i s soc ia t ion  energy only 0.5 cm-l  h igher  than  t h e  

b e s t  estimate ( t h e  l a t t e r  corresponding t o  t h e  assumption of a pure 

Rb5 p o t e n t i a 1  t a i l ) .  

This  is  a l s o  suggested by the  scatter i n  $he poin ts ,  and would n o t  be  

s u r p r i s i n g  i n  view of t h e  i n t e r p o l a t f o n s  Coxon' had t o  perform be- 

tween d a t a  f o r  d i f f e r e n t  i so topes  wi th  markedly d t f f e r e n t  accu rac i e s .  

12 

19. 
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3. DISSOCIATION ENERGIES AND LONG-RANGE POTENTIALS T"R0P.l THE VTBRATIONAL 

LEVEL DISTRIBUTION NEAR THE DISSOCIATION LIMIT 

While t h e  RKR method (d iscussed  i n  t h e  previous chapter)  is  t h e  

most accu ra t e  way of determining t h e  bowl of an  a t t rac t ive  p o t e n t i a l  

curve,  i t  has  d e f i n i t e  l i m i t a t i o n s .  One problem i s  t h a t  accu ra t e  

tu rn ing  po in t s  f o r  a given level  may be  obta ined  only i f  bo th  t h e  

ene rg ie s  and r o t a t i o n a l  B 

v i b r a t i o n a l  levels of t h e  given state.  This  restricts cons idera t ion  t o  

cases f o r  which t h e s e  d a t a  are a v a i l a b l e  about: t h e  p o t e n t i a l  minimum, 

and means t h a t  i n  most o the r  cases t h e  curves obtained may n o t  extend 

very  c l o s e  t o  t h e  d i s s o c i a t i o n  l i m i t ,  

method i s  t h a t  i t  i m p l i c i t l y  inc ludes  no s imple way of accu ra t e ly  

cons tan ts  are known f o r  a11 of t h e  deeper 
V 

Another drawback of t h e  RKR 

p lac ing  t h e  d i s s o c i a t i o n  l i m i t .  This is f a i r l y  se r ious ;  as t h e  d i s -  

s o c i a t i o n  energy is  perhaps t h e  most i n t e r e s t i n g  s i n g l e  proper ty  of a 

p o t e n t i a l  w e l l  e 

This  chapter  p re sen t s  ;I new method which y i e l d s  more a c c u r a t e  

va lues  of molecular d i s s o c i a t i o n  ene rg ie s  than  were previous ly  sb t a in -  

ab le .  It a l s o  y i e l d s  an  estimate of t h e  long-range poten t ia l .  t a i l $  

and p red ic t ed  e igenvalues  f o r  v i b r a t i o n a l  levels ly ing  above t h e  h ighes t  

one ob served 

3 .1  DERIVATION AND DEMONSTRATION OF THE METHOD 

This  s e c t i o n  is r e p r i n t e d  from t h e  J o u r n a l  of Chemical Phys ics ,  

Volume 52, pp. 3869-3879 (American I n s t i t u t e  of Phys ics ,  New York, 1970).  
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An expression is derived which relates the distribution of vibrational levels near the dissociation limit 
D of a given diatomic species to the nature of the long-range interatomic potential. in the region where 
the latter may be approximated by D y  C./K”. Fitting experimental energies directly to 
yields values of D, IE, and C,. This procFdure requires a knowledge of the relative ener 
vibrational numbering for at least four rotationless levels lying near the dissociatio 
i t  requires no information on the rotational constants or on the number and energ 
levels. D can be evaluated with a much smaller uncertainty than heretofore obtainable 
extrapolations. The formula prcdicts the energies of all vibrational levels lying 
measured, with uncertainties no larger than that of the binding energy of the hi& 
the method is tested with model potentials, and its usefulness is demonstrated by application to the precise 
data of Douglas, M$IIer, and Stoicheff for the B state of C12. 

1. INTRODUCTIOM 11, METHgID 

For more than four decades the Rirge-Sponcr’ es- 

minor niodifi~ations,2~~ for the determination of values 
for dissociation limits of diatomic molecules from ex- 
periinental vibrational spacings AG,,+I,Z.I One of the 
great virtues of this method is its simplicity, as exempli- 
fied by the exact linear relationship between A.G,+llz 
and v for a Morse Potential. In this case, AG(v) 
extrapolates to zero at  vD= [ ( o G / 2 ~ e 4  -+I, where 
is the noninteger “effective” vibrational index of the 
dissociation limit: For more realistic potentials it iS 
well known that the Birge-Sponer (B-S) plot shows 
positive curvature in the region just prior to dissoci- 
ation, due to the dominating influence of the long-range 
“tail” of the interatomic potential.2d*6 Graphical ex- 
trapolation to the dissociation limit is therefore less 
reliable, and uncertainties of several cm-I are common 
in values so obtained for the dissociation limit D. 

The WKB-based method to be described takes ad- 
vantage of the dominating influence of the long-range 
portion of the potential on the uppermost vibrational 
levels. It requires only the energies and relative vibra- 
tional numbering of four or more rotationless levels 
lying close to the dissociation limit D &e., less than 
~ 1 0 %  of the well depth below D). These are fitted 

estimates of D and of the long-range 

A. Darivakon 

first-order WKH quantum condition for the eigenvalues 
of a 

trapolation procedure has been employed, with only The starting point of the present treatnient is the 

V ( R )  : 

v++= - 
where E(v) is the energy of levpl v and & ( v )  and f s z ( v )  
are its classical turning poiirhts: E(v) = V[Rt(v)]= 
v [ R ~ ( ~ ) ] .  AIthougl, the all&red eigenvalues C O ~ ~ C -  
spend to integer v,  it is convenient to treat as a con- 
tinuous variable. 

(1) u,ith respect to I ; ( ~ )  yields Differentiation of 
dv 

-= 
dE(v) 
Consideration of the nature of the integrand in (2) 
suggests that the integral will be very nearly unchanged 
if the exact V(X) is replaced by an approximate func- 
tion which is accurate near the outer turning 
R ~ ( ~ ) .  ~ - , i ~  is illustrated in yig. 1 for the of a 
model potential, &sen to be of the L ~ ~ ~ ~ ~ ~ - J ~ ~ ~  
(12,6) form) using the approx~at ion 
for v ( R ) ,  

V ( R )  = D--Cn/Rn, ( 3 4  
where D is the dissociation limit of the potential, C, is 
given 

Changing thc variable of integration to y = & ( v ) / R ,  
Eq. (2) becomes 

- = 
dE(P) 

to an analytical approximation formula,.yielding “best” 

more accurate estimate of the potential: it is much E( 8 )  D-CJ[Rz( V )  J”. (3b) 

i .  

” tential. Although a proper RKR analysis yields a much 

more restrictive than the present method since it re- 
quires as additional information the energies and U, 
constants of d l  levels below the one whose turning 
points arc being cnlcu1;ited. Furthermore, the KKR 
approach provides no estimate of D or of the energies 
or even of the total number of vibrational levels above 

of extrapolating beyond the observed levels. 
the highest one observed, and offers no direct means X y-*(y”- I)-*%y 

3869 
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Frc. 1. Exact integrand (solid curves) of Eq. (2) for three 

Ievels. of a "standard" 24level LJ (12,6) potential.* The dashed 
segment of curve near RI is the approximate integrand [E(o) - 
(1 --2/R6) ]+z for w = 20. The dashed vertical lines are the turning 
points, where the exact integrand is singular. 

integral is well known? This yields an approximate 
analytical expression for dE(v ) /dv  near the dissoci- 
ation limit: 

I 

where K, is an obvious collection of constants and F ( x )  
is the gamma function.'O Note that dE(v )  /dv is closely 
related to the conventional Birge-Sponer ordinateG; 
cgs units are used throughout. 

Equation (4) shows that for the uppermost vibra- 
tional levels of a given diatomic species, the spacings 

D, n, and C,. Thus, for electronic states with the same 
long-range potential, B-S plots for levels near D will 
be precisely superimposable upon shifting of their ab- 
scissa ' Y v )  scales. This result is discussed further in 

I 
i 

1 

I 
I depend only upon the long-range potential parameters 

. 

Appeniii A. 
For sets of ~ i ~ r ~ ~ i o ~ u l  Bevels which can be described 

y Eq, ( e ) ,  the curvaturc of the -s plQe lrtit5t bo 

(saB(v)/d$= [ (n+2)/lrzz]Kna[D--E(v) Ja/*-l/'J 

=(IzAG(v)/dv2 

r3[~(QGa-l/afBGo+l/z)/dvzI. ( 5 )  

For it=6, this curvature is a constant; for w>6, it in- 
crca.ses with increasing 8, becoming infinite at the dis- 
sochtion limit; for 9K6, it decreases to zero at  k>, 
Positive curvature of a B-S plot for a set,ob experi- 

1 vibrational energies b therefore 8 necessary 
h not sufficient) condition for ihe 8 ~ ~ i ~ c a ~ i ~ t ~  

ications it, is moat convenient to 
eseaat method. 

11 
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I 
eniploy the ititcgrated form of :Eq. (4)," which for 
1 1 2 2  i s  

E (  ?I) = D- [( th- v )  11, J[zn/(n-2)1 , ( 6)  

where I&,= [ ( i z - - 2 ~ / 2 ~ 1 ] I C ,  and tin is an integration 
con~tant . '~J~ For n> 2, VD takes on physical signifi- 
cance as the effective (noninkeger) vibrational index 
at  the dissociation limit, pr d that the potentia! 
is well approximated by Eq. from the highest ob- 
served levels up to D. Pn thi truncation of VD to 
an integer yields the vibrat index of the upper- 
most rotationless level, say ab. It is interesting to 
note that the "nat~raI" dependent and independent 
variables in Eq. ( 6 )  are, respectively, the binding en- 
ergy 23-E(v) and the vibratibnal "index" counted 
down from D (for lz>2). Ap ations of the present 
method are based upon the ing of experimental 
energies E(v)  to Eq. (6) to values of tbe four 
quantities D, n, Cny and VD. T discussed further in 
Secs. 1I.D and III. 

i 

7 

B. Special Cases 

While the potentials considered above (w> 2) are of 
ost practical interest, results for ax2 will be noted. ' 
ere the integration constant ZAD must be malle? than 

any of the v values of the leveip being fitted (and may 
even be negative) since K ,  ig'positive and (a-2) i s  
negative [see Eq. (6 )  1. For m= I ,  Eq. (6) becomes 

0 - ~ ( ~ ) = ( ~ ~ / 2 ~ ~ ~ ~ ~ / ( 2 ' - ~ 2 1 1 p ) ' : ,  

which is the ex& quantum result for a pure R-E 
potential if one sets VD= - For n= 2, integration of 
Eq. (4) yields 

DL E ( V )  = CD- E ( O )  2 expr- n&v(2/p~)1/21. (7) 
Here the assignment of any given level as v=5 is 
arbitrary since the levels cannot be enumerated either 
down from D or up from a lowest level.16 Equation 
(7 )  is identical to the exact quantal result1* except that ' 
it omits the (usually small) effect on the apparent C2 
constant of the Langcr correction'" to the WRB inte- 

l'hc prcacnt appro:ic:l1 ciin idso bc cippiict? tu poten- 
tials whose long-rangc tails arc 'not of the inverse-power 
form. For exaniple, consider any potential, with an 
attractive exponential tail," such that a t  large 2, 
V ( R )  = D-Ae-PR. Applying the same ~ p ~ r o ~ ~ ~ ~ ~ ~ ~ ~  
[replacing the full potential in Eq. (2) by its tail and 
letting R+OJ, an expression analogous to Eq. (4) is  
obtained: 

' 

gral, Eq. ( 3 1 ) .  

, 

I 

' I  
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tion of this expression yields 

( )V1[1-fsin-1( A y] D- E ( V )  D- E(  V )  

fit@ 
= - (VDDg-V),  

2 +-[+- n“ A (2y.4) ‘ I 2  

where the integration constant VD has the smie physical 
sigilificance as in the inverse power (tz> 2) case. Upon 
expanding the left-hand side as a power series in 
{ [D-  E(v)  ] / A  ] ‘I2, reversion of the series yiebds 

D-E(v) = (Ja20*/2p) (P~-v)zfl+(n~~-v) H ‘ 

+ p 8 ( v D - v ) ” ~ + *  e.], (I)) 

1’= (2 /p.4)  %@/r. (10) 
where 

As with the inverse-power potential, the 13-S plot will 
show positive curvature; however here the curvature 
is quite small, and to first order (‘setting Y=O) it is 
zero.’* 

This result, [Eq. (9)] for potenlials will1 an espo- 
nential tail is particularly useful since it allows R 
test of thc approximations underlying the presenl 
treatment. One 1:iay compare Ecl. (9) with the exact 
quantal results for one realistic model potential with 
an exponential tail, tlie Morse potential’o: V M ( R )  = 
D, { 1 - cxp[ -p (R- .%)I 2, whose eigenvalues are given 
by4.14 

D - E ( v )  = (lt”P2/2p) (v~-v)2=0,3c,(VD-v)2, (11) 
where 7‘D is, as before, the effective vibrational index 
at  D. Clearly, in the limit Y 4 0 ,  the distribution of 
vibrational levels predicted by Eq. (11) agrees with 
that of Eq. (9). This is true despite the different vD%, 
which merely correspond to a change in vibrational 
numbering and a sinall shift in the eigenvalues (arising 
from the sniall change in VD-ND) .  In effect, this merely 
shifts the abscissa scale in the B-S plot. The influence 
of the short-range portion of the Morse potential is 
thus merely to remove the small “correction” terms 
in ( v ~ - v ) U  from Eq. (I)), yielding Eq. (11). The 
value of Y depends on both ,f3 and the coefficient of 
the long-range (attractive) exponential term in V ~ ( b z ) ,  
A =  20, exp(@K). Substituting the latter into Eq. (10) 
and using known relations among the Morse ‘param- 
eters? one identifies 

Y= (81/* /r )  (LL’~G/LL‘~)  exp(-@&), (12) 
which shows that for typical diatomics Y<<1. 
C, Significance of Parameters and Sources of Error 

Perturbation theory suggestszo that near the dissoci- 
ation .limit, the internuclear interaction may be ex- 
pressed (ts a sum of inverse (integer) power terns in R: 

Y ( R )  =D-  C,/R”. (13) 
‘DSO 

Over any small interval, E¶. (sa) is a close approxima- 
tion to Eq. (131, if one considers n to be an “effective" 
or “local” power which corresponds to a weighted aver- 
age of the different nz values:’ e.g., 

m 

In  the limit V-NJD, as &(v) reaches the asymptotic 
region, the effective nonintegerhpower n--tA, the (inte- 
ger) smallest power contribut#n to Eq. (13). As long 
as the potential for the sta n question is well be- 
liaved,22 fits of Eq. (6) to el ent subsets of a given 
energy spectrum should all yield essentially the same 
value of D, though the “IocaI” values of 12,  C,, and v~ 
differ slightly. 

At somewhat shorter separations, exponential-type 
exchange forces replace the i&erse-power terms in 
dominating the interactionz0; t)uis, the B-S plot be- 
comes increasingly linear for t& deeper levels.18 How- 
ever, the approximations of th$ present treatment arc 
worse for these more deeply b h d  Ievcls, so only the 
region dominated by the long-rhnge inversc-power terms 
(positive curvature of the 14-S plot) s’houltl Ix lrcated 
by the present method. 

There are two main sources of error inherent in the 
approximations represented by Eq. ( 3 ) .  First and most 
obvious is the neglect of the sinqularity a t  & ( v )  in the 
exact integrand of Eq. (2) (seegig. 1). This omission 
tends to make the estimate of the integral used to 
obtain Eq. (4) somewhat small, and since the relative 
magnitude of this error decreases for the higher levels, 
the effect will be to yield values of both n and G, which 
are somewhat too large. 

The second source of error arises from the fact that 
a realistic long-range interatomic potential is a sum of 
attractive inverse-power terms [see Eq. (13)], in con- 
trast to the single attractive term in the model LJ 
(12,6) potential. This means that whatever the effec- 
tive inverse-power precisely at  a given R ~ V )  [from 
Eq. (14)]; terms with higher powers contribute ,.ela- 
tively more to the potential for R<&(v) ,  so that the 
exact integrand of Eq. (2) is smaller than that for the 
single C,,/Rn function which best fits the potential at 
Rz(v). This error has the opposite effect of the first, 
tending to produce values of n and C,, which are slightly 
too small. The former error is most serious for the 
deeper levels, while the latter dominates the situation 
as n [see Eq. (14)] approaches its asymptotic value 

A. third potential source of error arises from use of 
the first-order WKE approximation [gven by Eq. (I)], 
compounded by the omission of the Latiger correction.16 
However the effect of this approximation is expected 
to be negligible?! 

Values of 14, t t ,  and C,, obtained on fitting any given 
set of vibrational energies to Eq. (6) yield a ‘r10cd92 
estimate 8f the potential in the form of 359. (3). Be- 

> 

- 

i . 

16’ 
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cause of the errors described above, this estinlate of 
the potent in1 will he somewhat too deep when using 
data for the deeper levels and slightly too shallow when 
considering only the highest levels. This is illustrated 

Next in importance to D are the power R and coeffi- 
cient C, of the longest-range (fith-power) term in the 
expansion for the potential [see Eq. (13)]. The errors 
in ft (see above) which induce slight errors in D, may 
also weaken the accuracy of ii. However, for many 
electronic states f i  is known from theoretical considera- 
tions”; the only question is whether the levels being 
fitted lie close enough to the dissociation limit HI to be 
governed mainly by the asymptotic En (n=fi) term 
of the potential. If this is so, it is desirable to constrain 
~t to be equal to f i  and employ a three parameter fit to 
Eq. (6) [or if 6=2, a two parameter fit to Eq. ( 7 ) ] .  
This should yield improved accuracy in D and provide 
significant values of the theoretically interesting Cn 
( 1 8  = .pt) and VD. 

D. ~ ~ p ~ ~ ~ e ~ ~ a ~ ~ o ~  
In this section, a procedure is described for the 

practical application of the present method to experi- 
mental data in a manner intended to yield the best 
possible estimates of the parameters D, n, C,,, and (for 
9 2 ~ 4 2 )  VD. The general case of 1222 will be considered 
first, followed by a brief discussion of the situation 
€or n= 2. 

A least-squares fit of experimental energies directly 
to Eq. (6) is the most general way of obtaining the 
best values of the four However, since 
this expression is nonlinear in the parameters, the gen- 
eral regression problem may have no unique solution 
since the sum of squares may show local minima which 
do not correspond to the best parameter values. This 
problem can be avoided if the initial trial parameter 
values (required by nonlinear regression procedures) 
are sufficiently accurate. The necessary trial values for 
$2 and VD may be obtained from a fit to a linear expres- 
sion obtained on combining derivatives from Eq. (6)27: 

j 

f 
< by the examples considered in Sec. 111. 

’ 

E’( 8 )  /E’‘( 8)  e - [ (%- 2) / (%+2) I (8D- Y) s ( 15) 

t j  
4 

Holding fixed the n and VD values thus obtained, Eq, 
(6) becomes linear in a new independent variable, 

’ W r  { [(e- 2) /2n] (@D- 8 )  ] r2n’(n-2)1 
i 
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of Eq. (7) shows that 

E‘(o)/E”(v) = - ($i)-f($brC2)”2. 

Thus, even though VD(FZ= 2) + OD, 
lim C(n-2)/(#+2)]~~fb) = (rfi)-*($pCS)*’’2, 
n-2 

anipulating Eg. (4) and ihs derivatives, one obtains 

( IW 

simple expressions yielding trial values of %p and C%: 
D= E(v)  -E( ~ + 2 )  /2w]&E’(0) ]’/E”( V )  

where, as before, C,, is obtaied from K,. While Eqs. 
($7) are valid for all n, in pvactice they are somewhat 
less accurate and more difficyft to use than i s  Eq. (16) 

Dissociation Litamit tiah Tail from 
~ i g e ~ ~ ~ ~ ~ e s  of otential 

The method is first applied.$to the exact eigcnvaltiesl 
of the previously mentioned!(Sec. I1.A) 24-level LJ 
(12,6) potential8: V ( R )  = f*1/R1*-2/R“ (here U =  1, 
fi=6, C6=2). A B-S plot df the eigenvalues of any 
LJ (12,6) potential has pte;i)ive curvature everywhere? 
However, as discussed in §ec. IT, consideration of the 
deeper levels by the present method is inappropriate, 
so the following analysis deals only with the eleven 
levels lying less than 10% of the well depth below the 
dissociation limit [i.e.,’D-li(n) <0.1D6].1e Throughout 
this section, energies are expeessed in units of the well 
depth (Le., set De= I ) ,  le in units of the equilib- 
rium distance (Le., set R and the zero of energy 
is set at the potential minimum. 

The calculated eigenvalues8 for the eleven highest 
levels were smoothed by fitting them to a 5th order 
polynomial in P), in order to obtain the derivatives on 

Ids trial values of D and Kn [which gives C, 

approximations for the direct non- 
Binear fit of the experimental energies to Eq. (6)’s; the 

four parameter values thus obtained -4. 

) makm this approach 1 Q 

1 B for the highest lev& SP the 24.leate’L 
broken lines have slopes ~o~~~~~~~ 

.- ’ 



the left-hand side of Eq. (95). Figure 2 shows a plot 
of this derivative ratio vs v,  compared with lines whose 
slopes correspond [via Eq. (IS)] to integer ti = 5, 6, 
and 7.= A least-squares fit of these derivative ratios to 
Eq. (15) yielded ‘pt= 6.29 and vD= 23.27 32; fixing M and 
VD a t  these values, a subsequent fit of‘ the eigenvalues 
to Eq. (16) yielded D=1.0-l.31X10-6 (the correct , 
value is exactly 1.0) and Cn=S.43. These estimates of 
the parameters were then used as the initial trial values 
for B nonfmear fitting of the eleven energies to Eq. 
(6) ?6*29 The parameters thus obtained were B- 1.0- 
1.29X IW6, a= 6.30, Cn=3.46, and VD= 23.25. 
c .The above fitting procedure was then repeated sev- 
eral times while the deeper levels were successively 
omitted. Levels in the interval v& V ~ V H  were included 
in a given fit; VU was fixed at 23 (the highest level) 
while vL was successively increased from 13 to 89.” In 
Fig. 3 the resulting parameter values (solid curves) 
are plotted against the energy of the lowest level in- 

fi=6, and the effective n 
from Eq. (M)] is always 

less than six* Thus the fact that four- 
Eq, (6)* always yield %>6 must be 

0.92 0.94 0.96 0.98 I .oo 
E$) 4 

FIG. 3. Results of fitting Eq. (6)  to the vibratioial levels of 
the 24-level L j  (12,6) potential.**Z’JJ0 The points cortespond to 
fits of levels V L  up to 0 ~ = 2 3 .  The broken horizontal lines denote 
the exact uantities E=6, D-1.0, and Cs=2.0. $he “best” n = 6  
estimate 04 VD is 23.353, in ood agreement with the value 23.358 
enernturl from the nnnlytg cqrressPon of Stngryn and Efirsch- 

fcldcrP Points joined by d i d  Lc5  corPcRpond 
fits with n being varied fteely while the 0th 

n heid fixed at the 
externfan of the do 

nded.) , 

I I I I 1 I I 
2.0 3.0 4.0 

‘ 1  

R 
FfG. 4. Piecewise potentials constructed from three-parameter 

fits ( D  constrained at 1.0) of the EJ @2,6) vibr 
to Eq. (6).*.” 0, exact turning points for the -, segments obtained from fits; - a  -, exact 
potential tail. 

type of error discussed in Sed. 1I.C. To obtain more 
accurate estimates of D, C,,, and VD, the above fitting 
procedure was repeated with @ fixed a t  A=6. Levels UQ 
to ZJN= 23 were fitted while VL was increased successively 
from 13 to 2O,299@ yielding the parameter values joined 
by the dashed curves in Fig. 3. This procedure was 
repeated with a fixed in turn af 5 and 7, yielding the 
dotted curves in Fig. 3. Considfration of the different 
curves -for D suggests that their comparative conver- 
gence (flattening) is a test of convergence to the true 
value of f i ? 4  In general, the three-parameter fits with 
n fixed at  ii yield meaningful values of C,,(n=A) and 
VD and give better estimates of E )  than do the four- 
parameter fits, “Best” values of all parameters are ob- 
tained from the right- ends of the dashed curves 
in Fig. 3: D= %.0+0.83 , G=2.01, andvD=23.353. 

his VD value agrees well with the first order WRB 
value of 23.358P6 

As pointed out aFove, the domhant error affecting 
these LJ (12,6) results arises from the effect of the 
singularity at &(et). e values of 82 and C,, obtained 
from the four-parameter fits (and the C values from 
the threeparameter fits) are somewhat large; as ex- 
pected, the error diminishes as the deeper levels are 
successively dropped. 

As discussed In See, 
vaPueer of SI, B ,  and Cs 

the potential over t 

. )  

z- . 2.. . 

7. 
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FIG. 5. Results of fitting Eq. (6)26,20 l o  the experimen*kal 
vibrational energies of CIS ( B  a&,,+) ,@J7 The points correspond 
to fits of levels V L  up to 0~=31. The broken vertical line is the 
best estimate obtained for D. Points joined b solid curves cor- 
respond LO four- ammeter fits with M varierffreely, while the 
others corresponrfto three-parameter fits with n held fixed at the 
indicated values. 

more, since all of the pieces should correspond to the 
same value of .D, holding D fixed at  the "best" vdue 
obtained above should improve the accuracy of the 
derived potential, particularly €or the deeper segments. 
To explore this point, levels VL to vH were fitted to 
Eq. (6 )  ,P9 with D held fixed a t  1.0 a,nd V H - V L = ~ ,  

while V H  was successively decreased from 23 to 17. The 
resultant "loca1" curves are shown in Fig. 4 (only the 
segments corresponding to odd V H  have been included) ; 
the points are the exact turning points, and in this 
region are indistinguishable from the - 2/R6 asymp- 
totic tail, As expected, the fitted segments are some- 
what too deep. However the "nesting" af the successive 
segments shows the decreasing error in the fitted n and 
Cn as the dissociation limit is approached?* 

The method i s  now applied k 
the B %w+ state of Cis. Doug1 
hw.2 ~~~~~~~~ EaccuPaee vibr 
tm6 to $1 @I tkles rtsta, t 

lying only a few cnrE b h v  B. A B-S plot of their 
data ~ O W S  positivr t rirvnture r~bove v== 1 I ,  and hence, 
these higher lev& may be treated IJY the present 
method. I n  w l ~ n f  foliows, the zero of energy is con- 
vcniently set at the lowest vibrational rotational level 
of the ground (X 'E,+) electronic state; results are 
reported in the conventional spectroscopic energy and 
length units: ctn-' and angstroms.n 

Pas in the LJ (12,6) case, the vibrational energiesa6 
were repeatedly fitted to Eq. (6) (with four free pa- 
r a m e t e r ~ ) ~ ~ * ~ ~ * ~ *  whiEe the deeper levels were successiveiy 
omitted from consideration, yielding the values oP n 
shown in Fig. 5.  Theory incSici~tes38 that f i=5 for this 
state. The fact that the fitted n falls dightfy below 5 
(for v ~ = 2 6  and 27) is probabjy due to the second type 
of error discussed in Sw. an.@. Over the region where 
the fitted n 65, the eigenvaljie distribution is probably 
dominated by the R-5 term in the potential. In view 04 
this, the data were refitted to Eq. (6) with IZ held 
fixed a t  5,26*29.33 to yield the estimates of D, C,,, sad WD 
joined by the dashed lines Fig. 5. These ( a = § )  
values of D are also compar o those obtained from 
analogous fits with n fixed,~respectively, at 4 and 
6 (dotted curves). A comparison of the limiting 
[E(vt)--+D] behavior of the:three D curves for fixed 
n supports the conclusion that the highest f i ~ e  or six 
levels lie in the asyirptotic A =  5 region. Furthermore, 
comparison of the ~ = 5  and '%z free" curves suggests 
that the former gives the more reliable estimate of D 
This determination of A = S  for this state (in agree- 
ment with theory) differs with the conclusion of @ y r a ,  
Richards, and Morsleym; the sprce of the error in the 
earlier work is discussed in ad. 30. 

The present. analysis yields D= 20 879.75(&0.15) 
cm-*, CS= 1.29(fO.M) X'lOhj@m-l Ah, and ivg(n=5) = 
34.W( ~ 0 4 )  .& This value of D is in agreement witht 
but is considerably more precise than the experimenters' 
best estimateS6 of B=20 880(&2.0) cm-*. The above 
Cs com ares well with the theoretical of 1.4tX IO5 

that there exist a t  least three unobserved bound IeveIs 
above v=31. Table I lists the predicted level energies, 
obtained by substituting pz=5 and the above values ~ Q P  

the other three constants into Eq. (6). 
Et is interesting to explore tbz question of the acw- 

racy of the D value which would have been obtained 
by the present method if the data for a few of the 
highest observed levels had not been available. Yn this 
case, the effective local potential for the highest remain- 

cm-' wp Gs Furthermore, the fitted value of v~ iinplies 
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ing levels would not be donhated by the asymptotic 
R - 5  term, so general four-parameter fits to Eq. (6 )  
are necessary (cf. the three-parameter, It fixed at  
fi fits described above). Experimental energies were 
repeatedly fitted to Eq. (6), eight a t  a time, as the 
highest observed levels were successively dropped from 
consideration.2G,29,a3 Figure 6 shows the values of D so 

'obtained plotted vs the energy of the highest level 
. included in a given fit E ( v H )  .42 It is noted that even if 

no levels had been observed above v=20 (which lies 
%244 cni-' bclow D ) ,  the present niethod would have 
yielded an estimate of D within 5.5 c n P  of the prcscnt 
%est" value! In contrast, ;I linear U-s estrhpolation 
from v= 20 yiclds an error in D of ~ 6 9  cni-l. 

To obtain an estimak of the t;iil of the C12(W Wu,,+) 
potential curvc, the data wcrc ngilin Iittctl to ISq. (6)2n 
eight levels l i t  a lime, except this tiiiie 13 was hclfi 
fised at  the "best" value of 20 879.75 c ~ i i - ~ . ~  In Fig. 7 
the segmented potential so obtained is compared to 
the RKR turning points calculated by Todd, Richards, 
and I3~+rne,'~ 

IV. CONCLUDING REMARKS 

It has been shown that the distribution of vibrational 
levels near the dissociation limit of a diatomic molecule 
is governed mainly by the long-range attractive tail of 
the internuclear p~tential."~ A simple approximate ana- 
lytic expression has been derived for this distribution, 
in ternis of the dissociation limit D, the power n and 
coefficient Cn of the effective local inverse-power poten- 
tial, and an integration constant VD (which has physical 
significance if a=.fi). These quantities may be deter- 
mined via a least-squares fit of experimental vibra- 
tional energies to this equation?6*m*" 

This approach yields the binding energy of the highest 
observed level with an error of a t  most a few percent, 
which is far superior to the error often resulting froni 
use of the customary B-S extrapolation procedures.' 

VH 
20 24 28 

I 
I I I I I I I I l l 1  

FIQ. 6. I) estimates obtained by fitting Eq. (6) to the energies 
of levels vr, to U R , ~ ~ + * ~  where u,f-u~=7 and is varied. Tha 
vertical uid horizontal broken lines denote the best present 
estimate of D. 
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VJG. 7. Piecewise potentials conslrurtcd from thrce-parameter 

fits (with the conslmint D =20 879.75 c1n-l) of thc experimental 
vibrational energiesxo of Cly(B W O ~ + )  to Eq. (0 )  .21,2Q 0, KKK 
turning points for the specified levels$ -, segments obtained 
from fits. 

I t  also leads to a determinatiop of the power 1z and 
coefficient Cn of the asymptotically dominating iowest- 
power term in the inverse-power expansion for the 
potential; the results for C12(B 3110,,+) accord \vel1 with 
theory.46 In addition, one obtains an estimate of the 
outer branch of the potential over th!: range of the 
highest levels, albeit less accurate than that obtainable 
from an RICR potential? However, the present method 
is much less restrictive in its data requirements and 
hence, may be applied in many situations where the 
RKR approach cannot. Here the only restrictions on 
the input data are that the levels must lie near the 
dissociation limit D, and that their B-S plot show 
positive curvature.4' 

A useful additional feature of the present method is 
its ability (when n=.fi) to predict the energies of all 
unobserved levels lying above the highest observed 
level. 

The main alternative methods of obtaining estimates 
of D from spectroscopic data are through iisc of the 
less accurate B-S extrapolation (referred to earlier) or 
from the limiting curve of dissociation (LCD).3.4 In 
the latter case, D is deduced by extrapolation to zero 
J of plots of the uppermost observed rotational levels 
vs J ( J + d ) .  A large uncertainty in D is introduced by 
the problem of determining the breaking-ofC point J,, 
for each v ;  this is particularly important for the vi- 
brational levels predissocisting at sinall J ,  closest to 
the intercept of the LCD a t  D [e.g., see the case of 
Br2(B SHOW+) discussed in Ref. 301. I t  appears that the 
LCD method is less reliable than the present one. 

A1 ternalive spectroscopic approaches to the dcter- 
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niination of 5 and C,,(u=ji) arc the standard KKR 
procedure and the predissociation nicthocl of I k r n -  
stein.49 Difliculties in the use of the former arc tlis- 
cussed in Ref. 30. The lalter has bcen found to yield 
reasonable results for a number of how- 
ever, it suflers from the above-mentioned problem of 
determining J,,,,,. Furtherniore, it presupposes an ac- 
curate value of D. In general, therefore, A and C,,(n=6) 
values extracted from predissociation data are espectcd 
to be less reliable than those obtainable by the present 
method. 
In addition to spectroscopic methods, atomic beam 

scattering mcasurennents yield A and C',,(it -4) values 
of roughly the same accuracy as those obtained from 
the prcsciif niethod.rN' l'hcsc two techniqucs arc csscn- 
tially coiiiplcninit ary. l'hc prcscnt npproncli i s  bckt 
npplicd to clcctronic statcs of a strongly ("chen~ically") 
bound molecule with many vibrational levels, where 
the profusion of electronic states arising from the inter- 
action of all but closed-shell atoms precludes the use 
of scattering measurenients. On the other hand, the 
shallow van der Waals potential wells normally en- 
countered with closed-shell atoms, ideal for study by 
the beam scattering technique, do not support enough 
bound states to be treated by the present method. 

The new approach has been deinonstrated by apply- 
ing it to the exact computed eigenvalues of a model 
LJ (12,6) potential, and to the accurate experimental 
vibrational energies of Clz( B ?TIID,+). In companion 
paperstO it is applied to the ground (X '&+) state of 
Clz and to the 13 states of Brz and 12,  and appears 
to be of quite general utility." In addition, arguments 
based on it greatly facilitated the electronic reassign- 
ment of some levels of IZ (see the reference cited in 
Ref. 21). 
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BIRGE-SPONER PLOTS FOR 
DIFFERENT POTEMTIALS WITH IDENTICAL 

The basis of the present method is the conclusion 
~ [Eq. (4)] that near the dissociation limit D, the density 

of vibrational levels dv/dE(v)  is determined almost 
solely by the nature of the outer (attractive) branch 
of the potential. Thus, B-S plots of the level spacings 
for different potentials with identical long-range tails 
and the same reduced mass (but with arbitrarily differ- 
ent short-range behavior) will be identical near the 
dissociation limit, provided their abscissa ( 0 )  scales are 
shifted appropriately relative to one another. This niay 
be tested either by using exact (quantal) eigenvalues 

LONG-RANGE TAILS 

f o r  suitaldy chosen I)otenli;iis or, with little loss in 
accwacp, I J ~  the use of W I< I$-approximal wl eigen- 
valtics. The  latter procedure has bren crnployed here. 
Reduced WI<B integral tal)lcs are avaih1)Ie for 1.1 
(12,G) and exp(a, 6) (a= 12.0, 13.772, and 15.0) po- 
tentials>*5z The S,J (12,6) potqntiid considered in these 
comparisons8 is that utilized i 3 Sec. JJ1.A; throughout 
the present Appendix, a11 ener ies and lengths are scaled 
relative to its wcll depth and!* i rluilibrium distance, and 
I h c  reduced mass p is assuniwt to be the same. 

For an exp(a, 6 )  potentiaPwith thc same long-range 
K-0. tail as the model 1.J (12,G) 

( A I )  

For any choice of II,, 15q. (AI: tlclincs the corrcspontl- 
ing Re; the appropriate 13, v* uec is then ol)tsincd by 
multiplying the Bz( = 10 000. P for the modcl LJ (12,6) 
potential8 by D,,R,Z. The parameters of the chosen 
esp(a, 6) potentials are givcn in Talde AI. 

For LJ (12,6) and esp(a, 6) potentials with a= 12.0, 
13.772, and 15.0, the WKB integral tables6J2 [based 
on a reduced form of Eq. (1)Isre presented as values 
of +=(v++)/B>'~ vs K=--ED--E(v)] /De and 0 3  
(J+$)2/B, .  Thus5 

AG(v)  = (D,,/Bzfk")dK/d+. (A2) 
Ignoring the Langer correct@ntR for rotationless levels 
(Le., using + values for e=@, rather than for J=0) ,63 

one may obtain dK/& by direct numerical interpola- 
tion.@ AG(v) values thus obtained, via Eq. (A2), yield 
curves U, C, D, and Li: in Fig. 8, The points on curve E )  
are the exact quantal8 vibrational spacings for this 
case,6 AGV+l,~. Case A refers to a purely attractive 
potential V ( R )  = D-2/R0, and Curve A was generated 
by substituting Eq. (6) into Eq. (4), with n=6 and 
c6= 2.fi6 The abscissa scales have been shifted to make 
all VD'S coincide. The insert on Fig. 8 shows the five 
potentials of the same c6. 

The convergence of the different curves in Fig. 8 as 
the dissociation limit is approached is considered good 

I evidence of the practical validity of the present method. 
Increases in reduced mass p and/or the depth or breadth 
of the potentials (introducing more vibrational levels) 
would merely stretch the ordinate and abscissa scales 
and shift the lower curves up towards Curve A (which 
would remain unchanged). 

TABLE AI. Parameters of exp(a, 6) potentials having same long- 
rangc tail as the model 1,J (12,6) .a 

Case E c .  B 

a 12.0 13.772 15.0 
u* ' 1 .o l . s  2.0 
R e  1.0 0,953 701 0.918386 
B, 10 O00.0 13 013.20 16 868.65 
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L 0 N G -1R A N G E P 0 T E N’k I A E 

ERDKX Is: ASPMPTOTHC f 
This section sunlniarizes rules for determining the 

limiting asymptotic power A in the internuclear inter- 
action. I t  is based on the references cited in Refs. 20, 
41, 56, and 57, and is limited to first- and second-order 
perturbation theory results. Magnetic (or relativistic) 
effects are ignored; this is reasonable for R 520 a.u.,s8 
and levels with outer turning points at larger dis- 
tances would not be readily observed. 

The A of the lowest-order term in the inverse-power 
series expansion CEq. (13)] for the long-range inter- 
nuclear potential is determined by the nature of the 
two atoms to which the molecular state adiabatically 
dissociates. If the two atoms are charged, of course 
fi= 1; if one is charged and the other is in an electronic 
state with a permanent dipole moment,6s A =  2; if both 
atoms are uncharged and in electronic states with 
Dermanent diaole moments,69 ii= 3. Another case in 

i 
4 
f 

bhich A=3 okurs is in the interaction between two 
identical uncharged atoms in electronic states whose, 
total angular momenta differ by one (Le., AL=f).  
This interaction is a first-order dipole rCsonanceM and ~i 

. ‘  
OS2fi----- ‘. 

O F  D I A T O M I C  M O L E C U L E S  ,3877 

unlike thc cffccts incntioncd ahovc, has no classical 
clcctrostatic analog. For interactions Ict wccn a charged 
and a neutral atom, f i=4 and C,=$(Z2eZa), where %e 
is the charge on the ion, and a the polarizability of the,  
neutral. The case i i = 4  can also arise in the interaction 
of an atom with a permanent @ctric dipole moment,s8 , 
and a non-Si-state atom with @permanent quadrupole 
moment. 

I n  general, pairs of (uncha;i%fTed) non-S-state atoms 
have a first-order quadrupol~qtiadrupole interaction 
which corresponds to A =  5 ,  and theoretical CS values 
are available for a wide range of systems.4‘ Occasion- 
ally the Cs coefficient for a particular state is zero for 
reasons of symmetry [e.g., for the ground (X’Z,+) 
state of the halogens3*], and ip this case A=6. FOP 
states which do not fall into anyhf the above classifica- 
tions, 5=6 (since all interactiq species are subject to 
the London induced dipole-inc$ced dipole forces). 

f 

* Work supported by National Science Foundation Grant 
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%e accuracy opthe WKB approximation, Curve A was obtained 
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accurate values of the derivatives dE(v)  /do. 

121t is interesting to note that for n=4 (ion-induced dipole 
forces) Eq. (6) is simply a quartic in o, and for n=6 (induced 
dipole-induced dipole, London dis ersion forces) it is cubic. 

By comparing Eq. (1) for E c )  = D  and E(v)  at  a SI 
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(hTcCraw-ITill Iiook Co,, h’cw York, lOS.i), VoI. 2, Src. 12.A 

16 ][:or pure inverse-power potentials with n>2, thcre arc a 
finite numbcr of levels within any finite neighborhood of the 
dissociation limit, but there arc an infinite number of discrete 
levels below it, estending down to infinite binding cnerw. For 
potentials with it<2, there exists a lowest level bound hy a finite 
energy, while there arc an inlinite number of levels within any 
finite nciglihorlrooti~rh~~~~cl of D. For ?t = 2, thc levels extend down to 
infinite binding rncrgy, and thrrc arc an infinite number of levels 
in any fini tc ncipliborhood of D. 

~ 1 t .  k;. Jangcr, I’hys. Rev. 51, 669 (1937). Using the Langcr 
\ V l i l %  modi(ication [i.c., replacing ./(J+1) by (J+4)*] would 
require replacing Kq. (3a) by 

For ir=2 this just means that Cz in Eq. (7) becomes [Cz- 
(fiZ/&)], but for tzf2, the integral arising from Eq. (2) is no 
longer analytically soluble. However, for realistic systems the 
Langer correction is fortunately very small. 

17 Within the context of the present approach, potentials with 
exponential long-range tails (such as the Morse potential) cor- 
respond qualitatively to inverse-power potentials with very 
large tz. The purely attractive exponential potential has both a 
discrete lowest level and a finite nuniber of bound states within 
any finite neighborhood of D. 

’SA linear B-S plot for levels near the dissociation limit of a 
potential will be considered as an indication that the potential 
in the given region is effectively exponential in form. 

19 Care should be taken to avoid confusion between the well 
depth De and D, the position of the dissociation limit. 

20See the discussion of intermolecular forces in (a) J. 0. 
Hirschfelder, C. P. Curtks, and R. B. Bird, Molwcztlnr Theory of 
Gases aird Liquids (John \.tiley & Sons, Inc., New York, 1964). 
(b) J. 0. Hirschfelder and W. J. Aleath, Advan. Chem. Phys. 12, 
3 (1967). 

ZlKote that in the case where some of the dominant terms 
in Eq. (13) arc repulsive (Le., their C,<O), some of these 
weighting factors will have differing signs, and the resulting value 
of H may then lie outside the range of the m’s of the contributing 
terms. If the lowest inverse-power term is repulsive while the 
hirher Dower terms are attractive. this zives rise to a Dotential 

V (  K) = D- ( Cn/K*) + (h2/2p) ( 1/4R2). 

K. 11. U E R N S T ~ T I N  

xnalngous to 1Sq.  (17) 

71 = c y  E” ( v )  ]2 / I? (q )  A”’ ( v )  3- 2, 

but because of tlie above prohlcm,$$his cxpression is lcss rcliahle 
than i s  Eq. (1.5). 

32 Since the dcrivativa are obtai rd from the highest 1 1 cncrgics 
only, they cannot he accurate at$hc cnd points, so only thc 9 
p i n t s  shown on Fig. 2 arc rcliahl 

23 Since the inpiit tlata (Irvel tnergies) are never cnmplcfcly 
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than the nuinhcr 01 free p;iramctcrs hcing fitted. If there is 
significant expcrimcnlal unccrlainty in tlie cnergics (c.g., more 
than a few percent of the level spacings), a retlrindancy of more 
than one lcvrl may he required lo yield meaningful values of the 
parameters. P 

3‘ i n  the application of this methpd to the B V l n ~  state of 12,50 
the exoerimental uncertaintv introduces considerahle imprecision 
into tt;e four-parameter fits,.so that% could not tJC directiy deter- 
mined within rcquired accuracy & better than f l .  
35D. E. Stogryn and J. hfelder, J. Chcm. Phys. 31, 

1531 (1959). These authors an analytic expression [their 
Eq. (89) 7 for the exact first KB value of vg (which omits 
the effect of the Lancer correction’s\. A more exact value of the ... . 

numerical constant i l their  Eq. (92j is 1.4526. 
aeA.  E. Douglas, Chr. Kn. M$IIer, and B. P. Stoicheff, Can. 

J. Phys. 41, 1154 (1963). 
37The experimental data for thi system are for the most 

common isotope 35~~5Clz; all energie?$re expressed relative to the 
v”=O, J“=O level of its ground el tronic state. 

38 T. Y. Chang, Mol. Phys. 13, 4T7 (1967) ; see also the discus- 
sion in Appendix B. 

39 M. A. Byrne, W. G. Richardsiand J. A. Horsley, Mol. Phys. 
12, 273 (1967). 

40 In choosing these values i t  is ssumcd that the “hook” at the 
end of the n=S curves in Fig. is significant, illustrating the 
decrease of the error term for levels farther into the asymptotic 
( n  = E )  region. The indicated uncertainties (including the error 
bars in Figs. 5 and 6) correspond to a statistical confidence limit of 
9SV? - - I ” .  

“It  has been shown by J. K. Knipp [Phys. Rev. 53, 734 
(1938)] that Cs coefiuents ma be expressed as a product of an 
angular factor and [ {r,2) ( r ~ ~  )?, the product of the expectation 
values for the square of the clectrdn radii in the unfilled valence 
shells on interacting atoms A and %. Knipp presented values of 

maxim;m at large R. This appeak to bye the case for 
state of 12 ;  R. J. I.eRoy, J. Chem. Phys. 52, 2678 (1970) 

22111 this contest a potential is “well behaved” if 
* 

potential maximum and no nonadiabatic perturbation. 
-23 Of course, both errors approach zero for levels approaching 

D. 
24 (a) See, e.g., the discussion by J. K. Cashion, J. Chem. Phys. 

48,94 (1965); see also Appendix A. (b) A. S. Dickinson (private 
communication, 1968). 

26See Appendix 13 for a sunimary of the theoretical % values 
for a wide variety of cases. 

26 Nonlinear least-squares eegression computer programs for 
fitting arbitrary analytic functions arc available a t  most com- 
puting centers. ‘I’hc present calculations uscd the University of 
Wisconsin Computing Center suhroutinc GASAUS for such fib, 

27 Primes drnotc differentiation with respect to v ;  e.g., E‘(v) = 
d E ( v )  ldv .  

28 I’aramctcr values obtained from ISqs. (1.5) and (16) should, 
in principle, be just as reliable as those obtained from Jsq. (6). 
However, the former approach requires a prior smoothing of 
the data to obtain accurate values of the derivatives E’(e)  and 
E”(e) ,a7 and in practice this introduces some error. Experience 
has shown that while trial parameter values from Fiqs. (15) and 
(16) arc satisfactory, they arc measurably improved by four- 
parameter fittings to Eq. (6).26 

*@In all of the results presented, an initial fit of the data to 
Eqs. (1.5) and (16) yielded trial parameter values which were 
used to initiate the general nonlinear fit to Eq. (6).26,” 

ao R. J. 1,cItoy and I<. 13. Bernstein, (a) Wisc. Theoret. Chery. 
report contains In 

estimates of D and K ,  obtained at different values of v, to yield 
a mutually consistent set of parameters. It is interesting that 

the angular factors and approximate expeciation values for a 
few systems, and T. Y. Chang [liev. Mod. Phys. 39, 911 (1967)J 
extended these results considerably. Recently C. F. Fischer 
[Can. J. Phys. 46, 2336 (1968)] has reported Hartree-Fock 
values of (rz) for all shells of atoms from He to Rn. 

42 The erratic nature of the curve in Fig. 6 is due to the influence 
of small errors in the experimental energies on the fitted values 
of the parameters; the corresponding values of n, C,, and v g  
show similar behavior. Including more levels in each fit dampens 
thcsc oscillations. 

43 IIolding D ilxcd dampens the “noise” due to experimental 
unccrtainty,’2 yiclding B more reliable segmented potential. 

4 4  J. A. C. Todd, W. G. Richards, and hi. A. Ilyrne, Trans. 
Faraday SOC. 63, 2081 (1967). 

the quasihound states, see A. S. 
“Some Properties of Round and 

nteratomic Potential Functions,” 

is expected to give values of C, 
which arc slightly small (see Sec. ILC), there is reason to suspect 
that the theoretical c6 value used for comparison41 may be some- 
what too large. M. T. Marron (private communication, 1969) 
points out that Fischer’s‘l values of (72) are based on Hartrec- 
Fock wavefunctions which do not have correct asymptotic tails 
and that correcting for this may decrease (ra), and hence the 
theoretical CS. 

“For a few systems, such as isotopic hydrogen and most 
hydrides, the inverse-power long-range forces are relatively weak, 
so that the 13-S plot shows negative or zero curvature even for 
the very highest levels. 

48 J. A. Horsley and W. G. Richards. J. Chim. Phys. 66, 43. 
(1969). 
W See, for example, H. Pauly and J. P. Toennies, in Alolrtk and 

Electron P h p k  Atomk dnlepaclions, Bart A, %. Marton, B. 

K. 1%. Eernstein, Phys. Rev. Letters 16, 385 (1966). 
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lhxlrrsnn, and W. I,. Fitc, Eds. (Acadcmic Press Inc., New York, 

Although all of the CBSCS thus far consirlerecl correspond to 
17=5 or 6, the present method should he even innre successful 
for systems with smaller ii (e.g., E = $ ,  for molecules which 
dissociate to ion+neutral) because of the relatively higher density 
of levels near D. 

62 The prcscnt work utilized the corrected tables reported in 
I W  6b. These are available as Document No. 9499 in the AD1 
Auxiliary Publications Project, Photoduplication Service, Library 
of Congress, Washington, D.C. 20540. 

BJ Comparison of the q vnlueu**8' for 0-0 and #=10-4 shows 
that this introdncrs ncgIigil)tc error. 

84 This WM dolie hy picccwisc liltinl: of tliircl-ortlcr mlyntiiiiinlx 
in +. 14cspitc tlic nillicr Inrge gaps itctwccrr the tabtdetcd puinta 

1968), Vol. 7 ,  Chap. 3.1, p. 227. 

I 
4 

for large $, this is expected to l x  fairly accurate .;incr the rigen- 
value distriltution for the highcst levels of an R~fi-tailcd pntential 
is rvpectrrl to be cubic in v (i.e,, in $).'z 

6sAlthough tlic exact vp is infinite tor the pure K-fl  attractivc 
potential, there are a hnitc nurnlw of levels within any finite 
intcrvsl about D.IG IIcncc the quantities (v,,-o) and Curvc A 
in Fig. 8 are significan t in thr scrnic1,assical (W K li) approximation. 

66 G .  W. King and J. II. Van Vleck, I'hys. Kev. 55, 1165 (19.39). 
s711. Margenau, Rev, M t r d .  Phys. 11, 1 (19.39). 
68 This conclusion is artiy lmerl on Chang's conclrrsinn" that 

for ttic stntrs of & mil cuz, t1we rriccta cto tint dominate 
ltic intcraclion until /{>Mi R A ~ .  

** This crtw kit hnwcvcr, rcltitivcly tttiwtnttion; 1 lirsrlrlrlrlcr 
nntl Mrlrlh~o~ point ortt thirt  only t m  cxcitcd II  rrionr rnn hrrve a 
pcrmrrncnt dipole moniont, 

I .  , 
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. .  
3.2 APPLICATION OF THE METHOD TO THE HALOGENS 

. 
The a p p l i c a t i o n  of t h e  method t o  CR2(B ) 9  presented i n  

Sec t ion  .3.l,is reexamined he re ,  and t h e  a n a l y s i s  is  extended t o  t h e  

40 

analogous states of B r 2  and 

CR2* I n  a d d i t i o n ,  a s imple 

i s  presented  and v e r i f i e d .  

i n  t h e  J o u r n a l  of Molecular 

I and t o  t h e  ground e l e c t r o n i c  s ta te  of 2 

g r a p h i c a l  means of u t i l i z i n g  t h e  method 

The work presented  below w i l l  b e  publ ished 
b 

Spectroscopy, Volume 37 (Academic P r e s s ,  

New York, 1971).  A pre l iminary  account of t h e s e  resu l t s ,  which was 

published i n  Chemical Physics  Letters, Volume 5 ,  pages 42-44 (North- 

Holland, Amsterdam, 19SO), i s  r e p r i n t e d  i n  Appendix A. 
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A recently-developed method for obtnining dissociation limits and long- 
range internuclear potentials from the distribntion of the upperm&t vibra- 
tional levels of diatomic moleculwi is applied to existing data for &e R TI:" 
states of Clz, Brz, and 11, and the ground X Qu+ state of Clz. Vatyes of the 
asymptotic long-range potential constants (C,) are deduced fro-; the data; 
they compare well with the best theoretical est,imates. The analysis yields 
improved D ,  values for the ground X 12,+ states of 3b*a6Clz, 7eJ8$rz, 81W3rz, 
and n7*1271z, respectively, as follows: 19 997.2s (rt 0.3), 15 894.5 (& 0.4), 18 896.6 
(rt 0.6), and 12 440.9(& 1.2) em-1. Presented also are: (i) a convenient graphical 
approximation procedure for utilizing the method, and (ii) a graphical means 
of making vibrational assignments for higher levels when gaps exist in the 
observed vibrational sequence. The latter approach suggests c 
tictnal - reassignments for ground-state C12(X %,+) and for Bra@ 

I. INTRODUCTION 
J 

An expression has recently been derived which relates the &stribution of 
vibrational levels near the dissociation limit D of a diatomic Aolecule to the 
attractive long-range part of its internuclear potential (1, 8). For the common 
situation where the outer branch of the potential may be closely approximated 
by the attractive inverse-power functionality : 

V ( R )  = D .- Cn/R", (1 ) 
the distribution of vibrational eigenvalues E (v) near D is closely 
bY 

(2) d I(n+%) /%n] - [E(v)I = KntD - E(v)l dv 

Using physical constants from Ref. (3) ,  the constant K ,  is 

(3)  
L 

for D and E(u)  in cm-', the reduced mass p in amu , and C, in cm-' A" . 
As usual, r (z)  is the gamma function (4). A more useful expression is obtained 
by integrating Eq. (2):" 

(4 1 
where Hn = [ (n - 2)/2n]K, , and for n > 2 the integration constant v0 is the 

.- "effective" vibrational index at  the dissociation frnit: E(vn) = D. Truncating 

b 

E(v) = D - [ ( v D  - v)H~][~~'(~-~)~ I n Z 2 ,  

- .  
Work supported by National Science Foundation Grant GB-166% and National Wero- 

mutics  and Space Administration Grant NGL 50-M)2-001. 
* National Research Council of Canada Postgraduate Scholar. 
a Equation (4) is valid only for cases in which n # 2. However, analogous expressions 

for tt = 2 and for the caae of an attractive exponential long-range potential me Qvea in 
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i t D  to :an intpgor then yields the vibr:itiotud index of the highext bound rotatinti- 
l t w  Icvcl supported by t.he poteilt id, Considcrntion of the third darivativa of 
Eq. (4) shows that Birgc-Sponer plots should x l i o ~  positivc (upwikd ) curvtaturo 
for levels lying close to D whero Eq. (1) is appropriate. The significance of tlic 
parameters and the types of errors inherent in Eqs. (1)-(4) arc discusscd in 
Ref. (2). 

11 general, values of thc four unlir~ownn D, n, C,, , arid V D  may be obtaiucd 
L ~ ~ ~ ~ ~ - ~ ~ i ~ ~ ~ r e ~  fit of cxperiiwwtnl vibrntiotmnl snergiea to Eel, (4), Wowover, 

since it is nonlinenr in the p:ir:tinCtrrs, Eq. (4) requircs good initial t rhi  pttrtim- 
c t m  v:iiucs if thr fit is to cotivcrgc uniquely. All of the rcwilts prc~onted below 
were obtniticd from general Iits to Ey. (4), using initial trial velucs obtained 
by the method presented in  Rcfx. (2, and 6). C~mputer  programs for these 
regression procedures are listed in Ref. (6). 

6 )  yield the best parameter values obtainiablc from Eqw. (2-4 
with almost the samo accuracy may be obtained from a sim 
ment of the data, described below, if two extra conditions 
the value of 6, the asymptotic value of the power in Eq. (I), must be known.” 
Second, the levels must bc sufficiently “dense” to allow use of‘ the approximation 

The general smoothing and regremion techniques discuxse 

. 

Then, with n held fixed at .ii; Eq. (2) yields the approximate exp 

[D - fi (f))] (Kn)12n’(n+2)’ (6 ) 

suggesting a plot of (Z,) [2n/(n+2)1 VR E (v). For the highest levels this should be 
linear with intercept D, while for the relatively deeper levels it should show 
negative curvature. Hence, a linear extrapolation from such a plot should always 

may be rewritten as 

(L\av)12n/ln+2)l = 

I 

t give an upper bound to D .  Once D has been determined in this manner, Eq. (4) 
I 

I 

(7 , v)jI(n--2)/2nl - tD - E (  - (VD - v ) H n .  1 

With n = 5, a plot of the left hand side vs ZJ yields ZJ, a$ the intercept, and 14, 
(and hence C,) from the slope. The usefulness of Eqs. (5-7) is demonstrated 
below. 

In Sect. 11, Eq. (4) is fitted to  the experimental vibrational energies of the 
B 31i:s, states of Clz, Br2, and 12, yielding estimates of the asymptotic long-range 
potential constants, C g  , and improvcd values of the ground-state dissociation 
energies.6 A further application of Eq. (4) is introduced in Sect. 111, 
gests vibrational reasssignments for the highest observed levels of Brs 
and of ground state 6l2 (X I&+). In the latter case, a fit to &. (4) th  
estimates of vD and of the long-range Cs constant. 

11. GROUND-STATE DISSOCIATION ENERGIES AND B a& STATE 
POTENTIAL TAILS OF THE HALOGENS 

A .  Chlorine’ 
A detailed discussion of the fitting of theexperimental data, (9) for 61, ( 

A summary of theoretical knowledge of the asymptotically dominating power A is 
given in App. B of Ref. (3). For the B a:,, states of the halogens iE = 5, while for their 
ground X I&,+ states, ii; = 6 (6, 7, 8 ) .  

Unless otherwise stated, throughout this paper sll energies are expressed relative to 
the t~ = 0, J - 0 level of the ground electronic state of the designated isotopic molecular 
species. 

(I The present discussion of chlorine considers only the most common isotopic species, 
* S * W I , *  

P 
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to Eq. (4) 1111s been prrscntrd (2 ) .  Howcvw, the reported (I, 9 )  utiprtaititie~ in 
I the parameters were incorrectly describrd as 95 '%I sttltiatical confidch intcrva18; 

they were actually two standard deviations, corresponding to the 95 76 confidence 

fitting the experimental energies (9)  ta Eq, (4) with n free or 

I 

! level only in the limit, of many degrees of freedom. Parameter vu1 

n in Fig. 1, t ~ ~ ~ ~ h ~ r  with the propnr 08 % ~ ~ ~ f i ~ ~ ~ ~ ~  ixnt 
I 

' 
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It w s  c o n c ~ u ~ ~  i i i  I<ef. ( 2 )  t~mt the iiipjiwt otwrved tavols of C I ~  (13 
dcpettd niciinly on thc t1irorrtic:d wyniptotic 6 = t itiverse-power 'torm in thc! 
loag-rangc potential: The disngrcrmcnt with the f i  = 6 suggmtion of I3yrne 
et d. (IO) is discussed in Sect. IV. Thf values of D, Cg , and v D  reported in Ref. 
($} (\.vhich also gave predicted energies of the unobserved highese bound levels 
of this state) are listed for the sake of completeness in Table I, 
improved estimates of their unccrtaintie8.8 ~ ina i l i r~y  include 

' 

! 

1 ! 
I 

' 

F the other halogen systems, to be discussed below.' 

TABLE I 
SUMMARY OF RESULTS' Bon THE HALOGICMS~ 

B ~JI:" states D (cm-l)b n = p i  C, (cm- "Am) V D  

a w q Z  20879.78 (f0.3') 5 1.2s ( k 0 . P )  x 1 0 6  34.9, ( i o . 2 q  

El.81Brn 19581 .?; (f0.35) 5 1.79 (k0.2) X IO6 61.28 (f0.3) 
78.7q31. a 1957CJ .?I (fO. 27) 5 1.7s (kg.2) X 10' Ci.61 ( k O . 3 )  

I¶?, 1271  a 20044.0 (zk1.2) 6 3.11 (a0.2) X IO6 87.7 (M.4)  

W%$ states (D t 0,) 

a s,ssc1% 19907.2a (2t0.3") ti 0.74 (&Q,3d) X IOfi  01.0 ( ~ k 1 . 2 ) ~  - - 79,75Jjr, 16894.6 (10.4) 0 
s1.@1grn 15890.6 (10.5) G 

187,1¶7I 12440.9 (11.2) 6 
- - 
- I 

81 Scc footiiolc 7. 
1' Sce FooLnotofi 8 ant1 9. 
" sco footllotc 8. 

Thetiu rrncerLaiiiLies iirc oiily csLirna.tra. 

Whilc the piiramctcrn givca in  'i'uble I are the best v:ilticR obtt~iriahlc from 
the availablblo experimcutd &ita (.9) using the present method, resulB of nearly 
the same quality are obtained on utilizing these d a h  ( 9 )  directly in the simple 
graphical manner suggested by Eqs. (5-7). For this case the theoretical ii = 5, 
and Fig- 2 shows the plot suggested by Eq. ( G ) ,  the intercept is indistinguishable 
from t b  value of D obtained from the fits to Eq. (4) (see TabIe I). Using this 
D and n = ii = 5, Fig. 3 shows the plot suggested by Eq. (7); its dope and 
intercept are very close to the fitted values of N, and vD (from Table I). 

atomic 
Cl spin-orbit splitting of 582.50 cm-' (12, 15) yields a ground-state dissociation 
energy of Do = 19 997.25 (f0.3) em-'. This differs significantly from both the 
estimate of Do = 20 OG2 (f40) cm-' obtained by Rao and Venkateswarlu (1 4 ) 
from a Birge-Sponcr extrapolation of their ground-state vibrational data, and 
from the Do = 20 040 (f20) om-' which Clyne and Coxon (16) obtained on 
reinterpreting the data of Ref. (14). However, the discrepancy is removed by 
the vibrational reassignment of the highest observed ground-state level, dia- 
cussed below in Sect. IXI. 

4 

Combining the fitted D value for Clz (B 'Ik) with the 2Pr,2 - 

' 

. Bromine 
The present analysis of the B state of Br2 makes use of concurrent fitting 

* The find uncert>nintics in tho beat, p:wamotser vnlries for Cla ( R  %:,,) cliffor from both 
the prc$ion~ly-roportod vnltin~ ( 1 ,  3) a t i d  t.110 trtie ne% stntisiht snnficlntico irrt(wvlits 
R I I O W I ~  i& Pig. 1. 'J'ltn vdii(w givcvt fwn Imf4 c \ H i h & w  t b n w l  ntr t<lrn fWj$, oonfitfminn int,arvRIR 
for tho latit fcw poirite to tho ri&t in Fig. 1. 

The pccrtainties in these D values differ from tho 
because of the incorrect 95% confidence intertrals in the 

E -I*-- 

-iIj 

t 

. I -  r 
I" 
i 
I 

t 

I , 
4 

. -  . . .  
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20 500. 20 600. 20 700. 20 800. 
E(v) 

d 
a& for 8 6 . * K X a  [B ?&) (9) plotted according to Eqs. (5-6) with n = ii = 6 
4). Energies are in om-'; the mark at D denotes the fitted value from Table I. . 

FIG. (3. Data for ss*a6C1, (B an,',) (9) plotted accoeding to Eq. (7) with n = ii = 5 (see 
__  footnote 4). Energies are in cm-1; the mark at VD denotes the fitted value from Table 1. 
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to Eq. (4) of dnt:l for diffvreiit isotopcs it1 :L given rnolcctllnr elc~t~ror~ic stntc!. 
The only assumption rcquisrd is tiinto tht! long-range patontid trrilx of the isotOpic 
species be identical." If the iaotopic potcntinls are msumed to be jdentjc:bl 
everywhere, the number of free parameters in the problem is reduced further, 
since the ratio of V D  vdues for isotopic species i and .j is then determilled solely 
by the reduced mass ratio: 

(8 1 
To obtain trial parameter vdues fos a multi-isotope ctwe ( 6 ) ,  Eq. (8) is assumed 
and the relative isotope shifts arc rstimated." (AIternately, trial parameter 
values may be estimated sepasately by applying Eqs. (5-7) OF the method of 
Ref. (2) to the data for the individual isotopic molecules.) Mowever, in the final 
fits to Eq. (4), D,  n, C, , v D  for each isotope, and the relativakenergy shifhq 
(ground-state zer6point criergy shif k') for the diffrrmt specie? were the free 
parameters. 

Horsley and Barrow (1 8 )  have meamred vibrational energies 
vibrational levels, u = 58-53, near the dissociation limits of the 
79.78 Brz and sl'81Brt. (It is suggested in Scct. III that their vibrat8ional msi&rnent 
for these levels is one unit too small; the new numbering is used here.) Un- 
fortunately, a fit of these eight observationcr to Eq. (4) with a1 
free did not yield a reliable value of A. However, since all the 1 
lie within 20 cm-' of the dissociation limit, i t  is probable t 
primarily on the theoretical4 asymptotic potential behavior 
The plausibility of this assumption is strengthened by consideration of Fig. 2 
which shows that for C1, (13 'I&), the levels within ca. 40 cm-' of D accord with 
% = 5,  while the theoretical Cs for Clz is considerably smaller than that for Brf. 

Fixing n = 6 = 5: the eight data were fitted to Eq. (4), yielding the param- 
eters given in Table I, and an isotopic zero-point energy shift of 2.05 (=tO. lZ)  
cm-'.' The latter is in good agreement with the more precise value of 2.03 cm-', 
the difference between the gsound-state isotopic zero-point energies calculated , 

from the vibrational constants of Ref. (18). 
The ratio of the Brz isotopic vD's in Table I agrees we11 within the uncertainty 

of the fit with that predicted by Eq. (8), confirming its validity for this case. 
Hence, Eq. (8) may be applied for the mixed isotopic molecule 79%r2, yielding 
V D  = 60.89. Furthermore, the (79,79)-(81,Sl) isotope shift suggests a value of 
D = 19 550.'14 cm-' for the mixed isotope ($9,81). Using these interpolated 
parameters and the constants given in Table I, the energies of the highest vlbra- 
tional leveh of the B potmtiril may be predictrcl from Eq. (4) for d l  three 

1 

211, ( j  )lb (i) = [P (3 > / P  (i )I"'". 
l 

I 
I 
i 

I 
, 

12 

I 

- 

10 This is much less stringent than requiring precise potentid invariance everywhere, ' 
including R values near the minima. Small differences between potential curves for differ- 
ent isotopic species in a given state arise from the coupling of nuclear and electronic motion. 
In their a priori calculations for the ground stake of H z  , Kolos and Wolniewice (16) showed 
that the effect of such coupling disappeared a t  long range. More generally, the effect of 
this coupling on an eigenvalue depends on the expectation vrtlue of the nuclear kinetic 
energy, and this goes to zero for levels approaching the dissociat,ion limit [e.g., for ground 
state I f ,  , see Table I11 of Ref. (17)]. 

11 These Rhifta were cstiniatcd in two ways: (a) by comparing vihrat.ional zero-point, 
energies, nnd (b) by s ~ p a r a t d y  smoothing the levBl energies for tho differwit, isotopic 
molcclilcs as ftinchions of IL comtnon irlmissn x (relnt cd to t,he vibrntional qrinritirm niimher 
by: x = v ( i )  fp(l)/p(i)]l'a and comparing the calculated ordinates a t  any chosen x value. 

Values of long-range C%constants may be expressed as the product of a factor peeiiliar 
to  the electronic state in question, and the expectation values of t,he square of the radii 
of the valence electrons (99 on the interacting atoms (6). Knipp (6) and Chang (7) have 
presented tables of these numerical factors for a wide range of situations, and Fiche r  (19) 
has recently presented accurate Nartree-Fock valuesbf (9) for the ahells of most a t o m .  

i I 



4% 

isotopic species. In T:rble I1 these are compared to the exporimeritnl onergics of 
Rcf. ( I S )  for the pure (79,79) rrnd (51,81) isotoprs, and of Brown (60) for 

! 

302 
p_ 

(T9,Sl ):a 
As in the discussion of GI:, it is inttwsting to compare the best fittcd parameter 

values \yith the estimates of them which would have been obtained from EqN, 
(ST), with n = ii = 5.4 ]In this case the two isohpes must bo considered sepa- 
rately; for each, the four observed energies yield only two E,, valu&q, takque1y 
determining the intercepts D. These resultant D values for (79, 
are, respectively, only 0.05 and 0.15 cm-' larger than the b 
(Table I). Using these (approximate) D's and fixing n = 5, E 
Fig. 4. As before (for Clz, see Fig. 3), the slopes and interce 
statistical Uncertainties in the fitted Table I pwameter values 

Combining the fitted D values for the pure isotopes with t 
ern-' spin-orbit splitting (21 ) yieids ground-state dissociation energies of 
(79,79) e 15 894.5 (b0.4) cm-', and Do (81,81) = 15 896.6 (fO.5) em-'. 
The consistent estimated value for the mixed isohpe is D, (79,812 = 1% 895.5 

, 

(dd$) Em-'. 

- 
TABLE 11 

CALCULATXD ENERGIES (cm-1) OF THE HIGHEST BOUND LEVELS OF Isoi.orrc Urz(/j 311:~:u) 

Numbers in pareatheses are experimental; for (79,79) and (81,81) these are from dlcf. 
(18), whiIe for (79,811 they are taken from Ref. (20)s 

8 (79,791 (79,811 (81.181) 

19 448.89 (19 470.3) 19 444.qO 41 19 453.44 
469.72 (486.2) 465 $7 42 473.7G 

43 491.66 488.13 (499.5) 484 $1 
44 507.34 501.28 (512.5) 500; 07 
45 520.94 518.3U (524.3) 
46 532.65 530.51 (531.5) 

48 551.01 54!).G8 (@I .4) 548.18 
49 557.97 557.01 555.90 
50 5G3.65 (19 563.65) 563.04 5G2.28 (19 562.28) 
51 568.20 (568.20) 5G7.90 507.4G (567.45) 

571.60 (571.61) 52 571.76 (571.77) 571.74 
53 574.47 (574.47) 574. 69 574.82 (574. $1) 
54 576.46 57G. 89 577.23: 
55 577.84 578.46 579.00 
56 578.75 579.51 580.22 
57 579.28 580.17 581 .oo 
58. 579.67 580.61 581.46 
59 579.89 580. BE 581.68 
60 579. ?I 680.74 5 8 1 . 7 6  

47 542.132 540.90 (542.2) 5B.  98 

GI 581.77 

See ~otna;t.e 43, 

laBrown (20) stated that: "In general the measurements are not accurate to  better 
than 2 cm-1, and in cases where the isotope effect has not been identified, the error is con- 
siderably greater." Furthermore, consideration of Table I1 suggests that  some of his band 
heads might more properly be reassigned to the pure isotopes and/or to different vibrational 
levels. If this is done, for 6 of the 8 experimental (7$,81) energies given in Table HI tho 
agreement is better than 2 cm-1, while for the other two (u = 44 and 45) the disagreement 
is a t  worn6 3.6 cm-1. In any case, the calculated (Tyble II) energies for the deeper Ievets 
(e.g., B 5 43) are likely to be increasingly in error, 

I -  

> ,  
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the amount predicted by the reduced mass factor in Eq. (3). 

C. 

- ---_- 

. . . . . .  

, ,  , ,. , .. 

, ,  

i 

I The only quantitative data for this state extending above v = 58 appear to 
be Brown% (22)  band-head measurements for levels v = 
Birge-Sponcr plot of his vibrational spacings shows positi 
where, these data are suitable for trcatmcnt bycthe present 

As for Clz ( B  'I&) (2 ) ,  the vibrational energies were r 
(4) while the deeper levels were siiccessively omitted fr 
was done in turn with all four parameters being vaned 
a t  f i  = 5. The resulting parameter values are shown in Fig. 5, plotted against 
the energy of the lowest level includrd in a given fit, B (vL).' Unfortunately, the 
scatter in the data is such that the four-parameter fits become unstable when 
fewer than 10 levels are considered a t  once, precluding a direct determination 
of f i . Even when n is held fixed a t  A = 5, the three-parameter fits become erratic 
when fewer than 9 levels are considwed at  once. 

While reliable "local values" of n cannot be determined directly:, the flattening 
of the three broken line curves in Fig. 5 for vL 2 55 strongly suggests that the 
highest ca. 18 observed levels lie in the asymptotic (fi = 5)  reaion. This is quali- 
tatively confirmed by the fact that the fitted C5 values axe within 30% of the 
theoretical value'2 of 4.54 X lo5 cn1-l A'. The present best estimates of D, Cg , 
and vD , presented in Table I, were obtained by weighting the results for vL = 55 
to 64 by the squared inverse of their uncertainties? The V D  value suggests that 
this state has 15 vibrational levels above the highest one observed by Brown (22) ;  
predicted values of their energies, generated fmm Eq. (4) and the parameters 
in Table I, are given in Table 111. 

As in the previous cases, the best fitted parameter values can be compared to 
estimates of them obtainable from Eqs. (5-7). Figure 6, based on Eqs. (5-6), 
yields an estimate of D indistinguishable from the value in Table I. Furthermpre, 
the linearity of this plot for v 2 55 confirms the dominant A = 5 influence in 
this region. The ensuing plot based on Eq. 7 (Fig. '7) yields estimates of vD 
and H ,  lying well within the statistical uncertainties in the Table I values. 

Combining the fitted value of D with the 7603.16 em-' atomic 2P1,~ - 2Pa,~ 
splitting (12, 26 )  yields a ground-state dissociation energy of Ed,, = 12 4448.9 
( f 1 . 2 )  em-'? The source of the disagreement between this resdt and Verma'8 
(26) D ,  = 12 452.5 (f1.5) cm-' is discussed elsewhere (11). 

. 

. 

1 

. .  
*"The present discussion of iodine considers only the most common isotopic species 

16 The original vibrational numbering of these levels haa since been revised ($3, 24); 
UT, 127 I*. 

thus %he numbering used by Brown (22) haa been deereesed by one unit. 
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1 

009.4 (009.0) 80 - 042.2 
015.2 (015.6) 81 042.9 
020.2 (020.2) , 82 043. a 
024.7 (024.4) 83 043. e 

84 043.86 
85 043.94 
86 043. e9 

I 

I 
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BO 75 * 50 55 SO 65 70 
0.0-" I * " " #  " " # ' ' I  ' ' * " " " I  1 " " I  " 

V --_ 
FIQ. 7. Dat8 for ur,B7I2 ( B  ($2) plotted according to Eq, (7) with n-= +i = 6 (see 

footnote 4); as in Fig. 3. 
__-_I- - 

HI. PROPOSED VIBRATIONAL REASSIGN 

. General 
Frequently the energies and indexing of the deeper vibratioiial levels of a 

given electronic state &re accurately known, vvhile near its dissociation limit I) 
the data are often relatively ~pamc,  with gups of sovcrul vibrutionnl quantum 
numbcm bctwacn obnorvcd Icvclx. 111 the absence of dditiotial itxforrnution, thin 
may l a d  to errors in vibratioiini wxignmenk. 

One constraint which may be applied to the data is to require that the Birge- 
8poner plot for t h  pecks in question shoukl have positive cupvatwe for levels 



51. 

11eas D (1 ,  2 ) .  The present :ipproach implicitly includes this constraint while 
making more explicit use of Eq. (4). The necessary assumptions are a value for 
6, otld a good estimate of D which is independent of the vibrational numbering 

.under dispute. Then [according to Eq. ( a ) ] ,  for n fixed at  6,  a plot of [D - 
E (,,, )11b-2) 12nl vs u should be linear for levels very near D,  while showing progres- 
sively stronger negative curvature for deeper levels (see discussion in Sect. I). 
Since the long-range interatomic interaction may be expr 
sum of inverse (integer)-power terms in R (of lowest o 
“Iocal” 11. a t  the outer turning pointa increases with the bin 
corisideration of Eq. (4) shows that in the limit of vel7 la 
vmies directly as (uD - u)’, Thus, a plot of [D - I$ (v )~”  
strong positive curvature near the dissociation limit (for 72 4. 4 this curvature 
becomes infinite a t  D ), while becoming increaaingly linear for t 

The prcscnt approach consists of rcquiring the vibrntiorial 
fiuch that the two typcs of plot disciisscd nbovc show the appro 
linear rcgiorw. As a chwk, in  Fig. 8 this approach was appli 
Douglas el al. (9) for @Iz (UsIIt,4), for which k = 5.4 Clear1 
been a gap of 10 unobserved levels somewhere in the range, Fig. 8 would have 
unambiguoudy fixed the vibrational assignments, 

’ 
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B. Vibrational Reassiynment and Potential Tail of Ground-astate Clz ( X  ‘2,’) 
The only experimental data for highly excited vibrational levels of ground state 

6 1 2  are the UV resonance emission doublets reported by Rao and Venkateswariu 
(14). The rotationaI assignment for these doublets has recently been revised 
(16) yielding slightly different energies, and t h s e  are used here. However, the . 
validity of the present discussion does not hinge on this change. 

(1-41, the extrapolation of a Birge-Sponer plot gave a value for the 
ground-state dissociation energy 66 (f10) em-’ larger than that of Sect. H 

In 

*e From the same data Clyne and Coxon (16) obtained a Do value 43 em-1 larger than 
the present estimate; however, this change does not affect the arguments presented here. 

-“- 

- - ,  ,. _--_L_--- --- 
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Furtlicrniorcf this plot showd growing ncgrctivc curvature ncar the diwociatbn 
limit, which ivould be wosscncd if thc exlr:q?olation were constrained to yield 
thc present D o .  This is the oppositc of the expectnd bchavior in this rcgion, 
especially sincc thc vibrationd spacings for the :Lnnlogous (but shallower) 
ground electronic state of 12 (29) show positive curvature for levels lying within 
IO00 cm-' of the dissoci:ttioa limit. Altbough om exprcb the 
p o i w  attractive potential tail to be somewhat ivoakcr for 
- influence on the highest vibrational levels 8~iou~d not d 

Ref. (14) reported observations of all adjacent or 
levels from v = 9 to 42. Above this point four other 
rated by gaps assigned, rcspectively, as two, three, 
levels. The anomalous increasingly negative Birge-Sponer curvature is explained 
if these gaps are too small. Using the theoretical 6 = G and the ground-state 
dissociation energy obtained in Sect. IIA, the observed love1 
ated using the rotational reassignment of Ref. ( I & ) ]  are pres 
the form suggested by the preceding section. Above v = 42, eac 
points is joined by a straight line which is extrapolated to the 
ing to the next higher observed level. The possible vibration 
respond to integer vdues of v on these tie-lines, and the three pairs of curves in 
Fig. 9, ( A  ,A'), (B,B' )  and (C,C')  correspond to the only plausible sets of 

-to 
8. "5' 

Y 

Y 
,o, 

4. 

0. 
V 

1 .  

I 

I - 
FIG.-9. [D - E(u))1fn-P)W vs u for observed levels of aE-S6C12 (X I&+) (24, f6) with D 

scale). All energies are in cm-1. The possible vibrational assignments (points joined by 
solid lines) correspond to integer values of u on the tie-linea for the different levels near 
their intersections with the linear extrapolation from the two preceding levels (broken 
lines). 

1 from Table I, for both n = m (0, left ordinate scale); and n = ii = 6 (A, right ordinate 
. I 

I 

! 

I 
In Fig. 9, curves (C,C') correspond to the original assignment (14); as stated 

above and confirmed by the curvature shown, this is implausible. Curve A shows 

experimental error. However, the slight positiye curvature in B at, the highest 
observed level is within the uncertainty in the,experimental energie~.'~ Thus, i t  
appears that the (B,B') rci.~~signmonl of tho original (14) e, = A4 B = 65 is 
corroc t 

I 
I 

I positive curvature for the higher levcls which is too pronounced to be due to 

-- 
I 17 TNe scatter in the doublet splittings (f4) which give the B, values for the obsemed 

. .  upper levels is large enough to  yield possible errors of a few cm-1 in tho level energies. 
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TBe maill restriction on the iisc of this approach is thc requirement for a good 
initid value of D. Applying tho nietliod to tho same t?11or~ios using trial D vaiucs 
in turn 50 cm-' snidler and Inrger tliari the present value would'have yielded ' 
(C,C') and respectively, as the most probable wsignmenb. On the 
other hand, using Do = 20 012 em-', the best estimate available previous to 
Ref. (Id), the present rcassigximent is obtained. 

cerning a possible barrier maximum (9, 16) .  No such m 
theoretically, since for the ground states of the halogens, at  least the first two 
nonzero inverse-power potential terms are attractive [see the argument presented 
for Iz in Ref. (11 )], as well as the exchange forces which give rise to the chemical 
binding. 

three highest experimental energies (v = 49, 52, and 5 5 )  yie 
C6 and vD given in Table I. The C,j obtained is in fortuitously go 
the theoretical Ce = 0.82 X 10' cm-' A6, estimated by Caldow 
However, fitting the highest two levels using the (A ,A') and 
assignments would yield Ca values respectively 7 times larger and % as large 

reassignment and the significance of the fit itself. Table IV presen 
predicted by the constants in Table I for the highest bo 

It is important to note that this rewsignment negates th 

Using the known 6 = 6 and Do for the ground state, Eq. (4) 

' 

as the theoretical estimate. This Iends credence to both the present vibrational 

61, (X *zg+):' 

%,. 

TABLE IV 
CALCULATED ENERQIICS (em-%) OF THE HIQH~.:E,T BOUND LEVELS OF &OUND-STATE 

36*a5Ciz(X'Z; ) 
The experimental level energies are given in parentheses. 

2, E(v) v 

48 19 119. 55 19 911. (19 905.5) 
49 306. (19 305.") 56 947. 
50 465. 57 972. 
51 597. 58 986. 
52 7oG. (19 411:) 59 994. 

54 860. 61 997. *6b 

53 792. 60 $96- gb 

n Calculated from the data in Table I of lief. (14) using the rotational reassignment of 

b Because of the uncertainty in UD (see Table I) ,  these levels may not exist. 
Ref. (16) and the ground-state rotational constants of Kef. (9). 

* 

C. VibrutionaE Beussiynmtrzt for ~r~ (B  'JI;~ 

The four vibrational levels observed near the dissociation limit of the B 'aie 
state of each of i917sBr~ and 81*81Brz were origin&lly assigned as v = 4$52 (18). 
The only other measurements of the upper vibrational levels of this state we 
Brown's ($0) observation of levels up to et = 48 of '"*'Br2. In order to compare 
these results, the (79,79) and (81,81) energies (18) were averaged to yield ap- 
proximate (79,81) energies for the levels considered. For this species (6 = 5 

d D was obtained in Sect. IIB), Fig. 10 is the plot rtuggested by Sect. IIIA. 
e solid poitdi are from Ref. ($0) t~iid tho open poirita uro tho i n t ~ ~ ~ ~ o l ~ ~ t * ! ~ ~  

O?HWgio# Inoritiorlcd nbovo. ItC iH nppnrc!nti t h t  tho oliginal (18) vibrntionnl 
numbering of the luttcr four laveh must bo iriereased by onc. 'Slhis remiignmont, 
w8w used in gect. IIIB. 

1 

I 

' i  

I 

I ' (  
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FIa. 10. [D - E(v)]l(n+)'*nl vs u for observed ((go), solid points); sn~$interpolated ((181, 

open points) levels of r@.81Br, ( B  a:,,) with D from Sect. IIB, for both n = CQ (circles, left 
ordinate scde), and n = iE = 5 (triangles, right ordinates scale). All energies 5re in crn-1; 
"old" and "new" refer to the vibrational aasignmente of the four higheat levels. 

I 
c 

I 

IV. DISCUSSION 

A .  Conzparison os 3 'JIn;f; State D Values wirh Previous Results I 
I 

Most of the renulk iu Tablo I cliflnr nomewhat from previofis dissociation 
limits and conclusions about the nature of thc hiig-r:t,itge pot&tials, despite 
being bared on the same data. For the D values, the appropriate qunntity for 
comparieon is [D - E ( u H ) ] ,  the binding energy of the highest obscrvcxl Icvrl. 
Table V compares the present and brxt previous values of this quantity for tha 
B states of the halogens. 

In the case of IS, the discrepancy originates in the graphical extrapolation of 
Ref. (22) beyond the highest observed levels. This illustrates the rrrors which 

m use of the Birge-Sponer ( 3 1 )  and Birge (32) extrapolation 

The previous best estimates of the dissociation limits of the (79,79) and (S1,8f ) 
isotopes of Brz (IfIk) (18) were based on limiting curves of dissociation [e.g., 
see Chap. VI of Ref. (33)l. The discrepancy with the present results implies 
that the absorption series were incomplete; i.e., ttiey did not extend to the pre- 
dissociation limit. It has been shown (S4) that for vibrational levels lying near 

TABLE V 

' 

- -  

INXMNB ENERUIES (Cm-') OF HIGHEST OBSERVED LEVEL (Ug) O F  THE B STATES OF 
THE HALOUENS 

VE Present Previous 

31 2.G (k0.3)a 3.1 

.. 
63 5.24 ( f O . 2 ~ )  2.7 (f0.6). 
53 6.98 ( f0 .3e )  4.1 (f0.6)a 
72 19.6 (f1.2) 

a See footnote 8. 
b Prom Ref. (9). 
0 Prom Ref. ( I S ) .  
d From Ref. (8.8). 
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the dissociation limit, the encrgics t i t  whioll the rot:itiotud sories for t h P  dif'fcrcrit 

[J,(J, + 1)]6'a. Since the data (18) do not conform'to this behavior, it  is 
inferred that the experimenters did not observe the very highest nonpredissooiat- 
ing levels. This is consistent with 'their lack of observation of any broadened lines. 

One further effect to be considered is the effect on the fitted D value of an 
error in the chosen value of 6. Fitting the data to Eq. (4) in the manner dc- 
scribed in Sect. 11, but with n set equal to 6 instead of 5, one obtains D values 
for Qz, Brz, and Iz, respectively, which are only 0.36, 0.50, and 2.7 cm-' smaller 
than the best values (Tablc I ) .  

B. The B all:u State Potential Tails; Comparison with Previous Results and with 

! 

1 
i 

_ _ -  

I 

1 
j 

I 

i 

I 

I 

' in Fig. I1 indicates that either the prment best Ca is co. 40% Nmall, or that tho 
RIiR rcsultv are slightly in error. Thc latter is plausible since IAO expcrimcrttal 
data were available for the lowest six levels of this state, spanning the lower 40 % 



, 
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The RKR potential for Br2 (B  ?I:,e ) from which Byriie el ai. (IO) concluded 
fi = 6 :qpears to have been cnlculntcd ($6) for the mixed isotope (7931) from 
the averaged Ref. (18) data for (?0,79) nnd (81,Sl). I-Iowever, [these results 
only span levels 9 S v S 19 and tliosc re:maigned as 50 r; v 5 63, atid v = 0 
lies ca. 37 % of the well depth above the minimum. In addition to using the in- 
correct origirinl (18) vibrationnl :wsignmcnt for the four high IcIveIs, the intcr- 
polatiori over tho Inrge gi~ps i n  thc fipt~ctrum is quito unrelinblr. For cxnrnplo, 
the intcrpolntcd 21 - 30 nltd 45 (7931 ) en~rgks arr, rrqxxtivoly, 6 and 0 CM-’ 
higher than the values reported by l3rown (!@I), ~vliile the extrapolated @6) 
[E@) - E(O)]  is S em-’ larger t1i:tn the value obtained from the data of Darby- 
shire (36). Since the unreliability of the RKR potential (36) appears to be the 
source of the previous (IO) anomalous ii = 6 conclusion, log4 
to Fig. 11 are not presented here. However, it  is rioted that i 
2.4 cm-l from Lhe previous value (18) to the present one alte 
encrgies for the highest levels suficiently for the last two paint 

’ 

--- ’ - 111 log plot to display the proper slope of -5. 
Steinfeld et al. (37) calculated RItR turning poinb €or lcvep 4.3 5 v I 50 

of Iz (Bk;;’), and on analyzing them, concluded that the potential was dis- 
playing its theoretical ii = 5 behaviol? in titis region. On the other hand, tho 
results presented in Figs. 5 and 6 suggest that the potential devi 
from this asymptotic behavior for v 5 55; morenver their 
coefficient is more than 100% largrr than the theoretical v 
ii = 5 conclusion appears fortuitous. Their turning points for 
based on the measurement of two vibrational bands whose upper states they 
assigned as v = 43 and 49. However, their ensuing v = 49 energy is 11.4 cm-‘ 
lower than the value observed by Brown (@), leading to a reassignment of their 
49-1 band as 57-2 [see footnote 4, Ref. ( I I ) ] .  This error in energy erroneoudy 
compressed the levels 43 < v < 49, and this is the probable source of their ap- 
parent R-’ behavior. i 

In ‘Sable VI, the “experimental” Gs values obtained by the present method 
are compared to the theoretical values.’a &so given are the approximate binding 
energies beyond which deviations from simple R-’ behavior become apparent, m 
indicated by Table I1 and Figs. 2 and 6. These quantities will depend mainly on 

s of the contributing K6, E-’, and R-’ potetitial terms. It 
this range is anomalously small in relation Lo the relative 
efficients. However, this may be spurious, due to errors in { 

G 

--.- _.__ either the energies or the assignments of the ( ,811 jeveis of Ref. (20):~ 
f 

TABLE vr _-_-- ~ - 
COMPARVON OF PRESENT EXPERIMENTALLY DERIVED CS VALUES (om-8 w6) WITH THEO- 

RETIC,\IL ESTIMATES (SEE FOOTNOTE 12) FOR THE B on,*, STATES OF THE HALOQEWS 

become dpparent in Bigs. 2 and 0 and Table 11. 
I E& tn = 5) is the approximate binding energy beyond which deviations from R-6 behavior 

Species c12 BLr2 1% 

CS , experi- I.% (f0.2) x 106 1.7s (A0.2) x BOB 3.11 (*O.Z) x BO6 
theoreticaln 1.48 x 108 2.3s X BO6 4.5.4 x 156 

mental 

05 SOb 

, t4 
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While the prescnt “expwimentnI” Cg values are Hcen to be in reasonable 
agreement with theory, thcy nrr consistcntly small. Sirice there may be some 
residual bias inherent in the present method ( 2 )  i t  is difFicult to make an appraisal 
of the theoretical values, although a potential weakness in the 
in footnote 46 of Ref. (2). Homover, the qualitative agreeme 

does strongly confirm th t~ t  the highest levels considered in 
depend mainly upori th8 nsymptoticnlly domirinnt po 

V. CONCLUDING RISMARMS 

The main restriction on the use of the present method (fits to Eq, (4))2* is 
that the levels considered must lie close enough to the dissociation limit that 
their Birge-Bponer plot shows positive curvature. It 1 1 ~ 1 3  also been found very 
advantageous to know the theoretical ii. for the state under consic@ation: If in 
addition the level density is great enough to satisfy the linear ap 
Eq. (5), then application of Eqs. (6, 7)  may yield good approxi 
best parameter values (see Sect. 11). Where appropriate, %herefore, plots of the 
form of Eq. ( 6 )  should replace conventional Birge-Sponer extrapolations aa a 
means of determining the dissociation limit D .  

It is believed that the present mdhodology is now sufficiently well docu- 

’ 

, 

“ 

I mented2’ to become another everyday tool in the 8pectroscopists’ data analysis 
kit. 1 

RECEIVED: June 26,1970 
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3 . 3  FURTHER DISCUSSION OF THE METHOD 

Approximate Graphical  Procedure f o r  Determining t h e  Power n 

I n  t h e  two preceding ~ e c t i o n s , ~ ~ ~  va lues  of t h e  p o t e n t i a l  parameters 

D, n 

from (non-l inear)  leas t - squares  f i t s  of sets of experimental  v i b r a t i o n a l  

and Cn9 and of t h e  l i m i t i n g  v i b r a t i o n a l  index vD, were obta ined  

ene rg ie s  t o  t h e  expression:  

where Hn is  a known func t ion  of n and Cne3 On t h e  o the r  hand, i n  p a r t  I: 

of R e f .  (2), simple g r a p h i c a l  procedures ( u t i l i z i n g  an  assumed known 

va lue  of n> were presented  f o r  determining D ,  C and vD from such d a t a ,  n 

The la t te r  are s l i g h t l y  less accura t e  than  f i t s  t o  E q . ( l ) , i n s o f a r  as 

they  assume t h a t  t h e  f i r s t  d e r i v a t i v e  of t h e  v i b r a t i o n a l  energy wi th  

r a s p a t  to v, E P  (v>$ may&e accura t e ly  obtained from t h e  d i f f e r e n c e  ~, 

%omla: 

., 
JPI 

However, t h i s  does no t  appear t g  in t roduce  s e r i o u s  errorsJ s i n c e  i n  t h e  

cases considered,  t h e  graphical ly-obtained parameter values are viE7 

t u a l l y  i n d i s t i n g u i s h a b l e  from t h e  r e s u l t s  of g e n e r a l  l eas t - squares  f i t s  

wi th  t h e  same assumed n a 2  It w i l l  now b e  shown t h a t  a similar approximate 

ical  procedure may sometimes b e  used to determine n. 

The second d e r i v a t i v e  E '  ' (v) may be  reason&ly- approximated by an  
I .* 

~ express ion  analogous t o  Eq.(2) : 

J eE(vS.1) - ~ E ( v )  4- E(v-l)] (3) 2 E '  ' (v) 2 A Gv E - AGvBg 



3 e 3  60 - 

Replacing t h e  d e r i v a t i v e s  i n  E q ,  (15) of Ref.  (11, by Eqs. (2-31, one 

ob ta ins  4 

Fig .  1 shows t h e  p l o t  suggested by E q .  ( 4 )  f o r  t h e  h ighes t  observed 

v i b r a t i o n a l  levels5 of  CR (B ) ;  t h e  t h r e e  l i n e s  have s lopes  cor res -  

ponding t o  n = 4 ,  5 and 6. It is ev ident  t h a t  t h e  f i v e  h ighes t  p o i n t s  

(based on t h e  seven h ighes t  observed levels) correspond most c l o s e l y  

t o  n = 5.  

growing in f luence  of o t h e r  con t r ibu t ions  t o  t h e  p o t e n t i a l .  

3 4 -  il 2 ou 

The nega t ive  curva ture  of t h e  remaining p o i n t s  re€lects the 

6 The r e s u l t s  i n  F ig ,  1 are i n  accord wi th  t h e  previous conclusion 

t h a t  t h e  d i s t r i b u t i o n  of t h e  h ighes t  observed v i b r a t i o n a l  levels of 

B-state CR 

Ite5 p o t e n t i a l  t e r m .  

depends mainly on t h e  t h e o r e t i c a l l y  asymptotically-dominant 2 

This  demonstrates t h e  v a l i d i t y  of Eqs. (2-3) f o r  

t h i s  

E q s  a 

r o l e  

system.7 Thus, i t  appears 

(2-3) are f a i r l y  accu ra t e ,  

as E q s  a (6-7) of Ref. (2) e 

t h a t  whenever t h e  approximations of 

Eq. ( 4 )  can f u l f i l  t h e  same u s e f u l  

Unfor tuna te ly ,  i t  may not  b e  appl ied  

t o  t h e  analogous states of B r  

d a t a  f o r  t h e  former,  and t h e  scatter i n  t h e  d a t a  f o r  t h e  l a t te r .  

and 129 because of t h e  pauc i ty  of t h e  2 

V a l i d i t y  of Approximating t h e  P o t e n t i a l  by a S i n g l e  Inverse-Power T e r m  

Over a s u f f i c i e n t l y  narrow i n t e r v a l ,  any monotonic a t t rac t ive  

p o t e n t i a l  with nega t ive  curva ture  may be  a c c u r a t e l y  represented  by t h e  

three-paramet er express ion  : 

V(R) = D - C n /Rn (5) 



3 4 -  Figure 1s Experimental  d a t a  for  CR2(B II ) p l o t t e d  according to '  E q ,  ( 4 )  
ou 
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In  view of t h e  inverse-power form of t h e  per turba t ion- theory  expansion 

f o r  long-range in t e ra tomic  p o t e n t i a l s ,  8 

n=Z 

Eq . (5 )  is  p a r t i c u l a r l y  appropr i a t e  a t  t h e  ou te r  tu rn ing  po in t s  of 

v i b r a t i o n a l  levels ly ing  nea r  D. However, s i n c e  Eq. (5) (on which 

Eq . ( l )  i s  based) is  only  a l o c a l  approximation t o  E q e ( 6 ) $  t h e  parameters 

n, C 

desc r ibe  levels s u f f i c i e n t l y  near D t o  depend on t h e  l i m i t i n g  powez 5 a 

Consequently, a p p l i c a t i o n s  of E q . ( l )  have placed mosk' emphasis on 

f i t t i n g  i t  t o  t h e  very  h ighes t  observed levels,  whi le  f i x i n g  n equal  t o  

t h e  t h e o r e t i c a l l y  known ?I e 8  While t h i s  w a s  shown t o  be a very  good 

and v n D i n  E q . ( l )  have no t h e o r e t i c a l  sfgniffcancre un le s s  they  

assumption i n  Ref . (9) ,  i t  is  somewhat less accura t e  f o r  t h e  systems 

d iscussed  above. l J  

For t h e  BC 3 4 -  IT )-state halogens d iscussed  i n  t h e  present  work, 1.32 Ou 

Eq. (6) becomes ( see  Sec t ion  2-3 )  : 

s o  t h a t  t h e  levels nearest D correspond (via Eq . ( l ) )  t o  n & = 5  

only d i r e c t  evidence of t h i s  w a s  ob ta ined  f o r  CR 

Fig.% i n  Ref . (2 ) ,  and F i g . 1  h e r e ) ,  t h e  d a t a  f o r  B r 2  and I2 being re- 

s p e c t i v e l y  too  few and t o o  unce r t a in  t o  a l low d e f i n i t i v e  conclusions.  

However, t h e  agreement of t h e  der ived  "experimental" C va lues  wi th  5 
theory (see Table  VI i n  Ref . (2) )  apparent ly  at tests t o  t h e  v a l i d i t y  of 

The 

( see  Fig.5 i n  R e f . ( l ) ,  2 

2 
z- .  

t h i s  assumption f o r  t h e  h ighes t  observed v i b r a t % o n a l  levels of a l l  

t h r e e  spec ie s .  On t h e  o the r  hand, t h e  r e l a t i v e  
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m8gnitude of t h e  second inverse-power term i n  Eq.(7) decreases  slowly 

with inc reas ing  R, s o  t h a t  it may still c o n t r i b u t e  s i g n i f i c a n t l y  i n  

t h e  r eg ion  of i n t e r e s t ,  I n  view of  t h e  r e s u l t s  of Sec t ion  2 . 3 ,  t h e  

e f f e c t  of such terms should b e  considered.  

The ana lyses  i n  Sec t ion  2.3 of t h e  fou r  outermost RKR t u rn ing  

po in t s  f o r  t h e  B-states of CR2 and B r 2  suggested t h a t  i n  t h i s  reg ion ,  

t h e  Rm5 term i n  E q .  ( 7 )  i s  r e spons ib l e  f o r  only - ea. 65-75% of t h e  t o t a l  

p o t e n t i a l .  ??nus, a l though it s t i l l  preponderates ,  u se  of a single- 

term R-' approximation f o r  t h e  p o t e n t i a l  i s  somewhlt i n  e r r o r .  

Q u a l i t a t i v e  cons ide ra t ion  of t he  a r i g i n  of Eq.(I) shows' t h a t  t h i s  

causes  t h e  apparent  C 

somewhat small, as was found. lS2 

n o t  s i g n f f i c a n t l y  a f f e c t  t h e  r epor t ed  

cons tan ts  ob ta ined  from f i t s  t o  Eq.(l) t o  be 5 
However, t h e s e  e r r o r s  w i l l  probably 

2 I O  D and vD values .  

It appears  t h a t  t h e  non-negl igible  in f luence  of  p o t e n t i a l  eon- 
.% 

t r i b u t i o n s  o t h e r  than  t h e  asymptoeica'fy-dominant R-" term most 

s e r i o u s l y  a f f e c t s  t h e  c o e f f i c i e n t s  C; yie lded  by t h e  f i t s  t o  Eq.(l). 

However, t h i s  de f i c i ency  i s  a t  f e a s t  p a r t i a l l y  removed by an expansion 

of Eq.41)  which t a k e s  a c c ~ u n t  of o t h e r  c o n t r i b u t i o n s  t o  t h e  p o t e n t i a l ,  

work which w i l l  b e  r epor t ed  elsewhere,  11 
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9. 

Sec t ion  3.1; a l s o ,  publ ished i n  J. Chem. Phys. 2, 3869 ( l970) ,  

by R ,  J, L e  Roy and R ,  B. Berns te in .  

Sec t ion  3 . 2 ;  a l s o ,  t o  b e  publ ished i n  J. Mol. Spectry.  (197l ) ,  

by R e  J, L e  Roy and R.  B. Bernstein.  

See Eqs. (3-4) i n  Ref. (2)  e 

Eq.(4) ,  w i t h  t h e  d i f f e rences  rep laced  by t h e  corresponding der iva-  

t ives ,  was previous ly  appl ied  i o  t h e  exact computed eigenvalues  

of a model Lennard-Jones ( f2 ,6 )  p o t e n t i a l , '  The s l o p e  of t h e  

ensuing p l o t  had t h e  expected n-6 va lue  of 112, and w a s  d i s t i n c t l y  

d i f f e r e n t  from t h e  n=5 and 7 s l o p e s  of 317 and 5/9,  r e spec t ive ly .  

However, i n  t h i s  model system t h e  approximations of Eqs,(2-3) are 

q u i t e  poor f o r  t h e  h ighes t  levels, s o  t h a t  Eq.(4) may no t  b e  used. 

A. E .  Douglas, Chr. Kn. M&ler, and B ,  P, S t o i c h e f f ,  Can. J. Phys. 

- 41, 13.74 (1963). 

This  p r i o r  conclusion w a s  obtained by t h e  more complicated procedure 

of performing feas t - squares  f i t s  t o  E q , ( l ) ,  

For B-state CR2 , r ep lac ing  t h e  d i f f e r e n c e s  i n  Eq.(4) by t h e  

corresponding d e r i v a t i v e s  mainly smoothes t h e  p o i n t s  i n  F ig  .I, and 

does no t  s i g n i f i c a n t l y  a f f e c t  t h e  p re sen t  conelus isns .  

however, f o o t n o t e  4 .  

1 

Note, 

Here, E i s  t h e  power of t h e  lowest-order term con t r ibu t ing  t o  Eq.  ( 6 )  e 

A summary of t h e  r u l e s  determining ?i is g iven  i n  Appendix B of 

Ref,  (1) a 

We C. Stwalley,  Chem, Phys. L e t t .  - 241 ( l970) ,  
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10. This  is concluded on t h e  b a s i s  of t h e  observa t ion  t h a t  fixing n=6 

in fits of Eq.(f) to t h e  h ighes t  observed B-state Levels of CR2 

2 
B r  and I2 had only a small e f f e c t  on t h e  D values obtained.  2 

11. R ,  J, L e  Roy ( t o  b e  pub l i shed) ,  
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4- OTHER METHODS OF OBTAINING TNTEMTOMIC POTENTILLS - 

The presenr. d i scuss ion  is  mainly concerned wi th  t h e  empi r i ca l  

decermination of interacomie pozen t i a l s .  Hence, no examination of 

ab i n i t i o  ca l su l ac ions  i s  at tempted he re ,  and t h e  r eade r  i s  r e f e r r e d  

L-a t o  reviews and c e x t s  on t h i s  subjec t .  

b r i e f  summary of a number of technbques, p resented  mafnly t o  pu t  t h e  

methods of t h e  preceding chapters  i n t o  some kind of perspec t ive .  

me fs9le?wfng is a ve ry  

4.1 UTILIZING SPECTROSCOPIC DATA 

I n  a d d i t i o n  to t h e  approaches u t i l i z e d  i n  t h e  preceding chap te r s ,  

t h e r e  are two o t h e r ,  somewhat o lde r  procedures f o r  determining diatomfc 

p o t e n t i a l  w e l l s  from experimental  v i b r a t i o n a l - r o t a ~ i o n a l  energy levels ,  

The f irst  of t h e s e  is  due t o  DunhamP8 who used t h e  WKB approximation t o  

relate t h e  cons t an t s  Ym i n  t h e  express ion  f o r  t h e  energy levelsp 

t o  t h e  c o e f f i c i e n t s  of a polynomial expansion of t h e  poten t ia l .  about 

i t s  equi l ibr ium i n t e r n u c l e a r  d i s t a n c e ,  Sandeman’ then  inve r t ed  Dunham’s 

r e l a t i o n s ,  expressing tu rn ing  po in t s  a t  a g iven  energy E i n  terns of t h e  

Y 

Sandeman’s’ form and found t h a t  t h e  Dunham 

m a l l y  equiva len t  o 

all ene rg ie s  up t o  t h e  d i s s o e i a t f o n  l i m i t ,  t h i s  equivalence ho lds ,  and 

t h e  Jarmain-Sandeman series 

equivalence of t h e  two procedures ,  t h e  Jarmain-Sandeman series ’ ’ lo has 

Two decades la ter ,  Jarmain” cast t h e  RKRfr express ions  i n t o  m 
8 and IKREL methods are f o r -  

F i n a l l y ,  Davres and Vandersl iee” proved t h a t  f o r  

is  convergent However, d e s p i t e  t h e  ’,IO 
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been vrrtual.3.y ignored ,  wh i l e  ehe RKIP approach” is  very popular .  

8 I n  t h e  second gene ra l  method, Dunham’s polynomial i n  t h e  i n t e r -  

nuc lear  d i s t a n c e  R i s  rep laced  by a s imple parameter ized a n a l y t i c  

potent ia l .  Sunct ion,  The most f a m i l i a r  express ion  of t h i s  kind is  t h e  Morse 

p o t e n t i a l ,  f o r  whieh t h e  s i m p l e  exac t  r e l a t i o n  between t h e  parameters 

and t h e  v i b r a t i o n a l  e igenvalues  i s  w e l l  known. 13994 However, i n  most 

o the r  cases exace; express ions  f o r  t h e  e igenvalues  i n  terns of t h e  

poten t ia l .  parameters are not  known, and t h i s  approach becomes an 

approximate form of t h e  Dunham procedure.  The chosen (usua l ly  4- or 

5-parameter) a l g e b r a i c  func t ion  5s expanded about i t s  minimum as a power 

series i n  R and t h e  c h a r a c t e r i s t i c  parameters ex t r ac t ed  from t h e  

experiment a l  

c o e f f i c i e n t s ,  For a wide v a r i e t y  of such func t ions ,  comparisons have 

been made of both t h e i r  a b i l i t y  t o  reproduce experimental  e igenvalues ,  

and t h e i r  agreement wi th  t h e  more g e n e r a l  BKX. p o t e n t f a 1  curves.  

No s t r o n g  p r e d i l i c t i o n  f o r  any p a r t i c u l a r  a n a l y t i c  f o m  w a s  shown, o t h e r  

than  t h e  expected conclusion t h a t  t h e  !?-parameter p o t e n t i a l s  are b e t t e r  

than  t h e  3-parameter ones,  

s u i t a b l e  when t h e  l i m i t e d  f l e x i b i l i t y  of t h e  parameter ized p o t e n t i a l  can 

a c c u r a t e l y  account f o r  a l l  t h e  experimental  da t a ;  i n  practice, t h i s  

means when t h e r e  are very  Tew da t a .  

8 

8 
va lues  us ing  Dunham’s r e l a t i o n s  f o r  t h e  power series ynm 

15 9 l e ,  

In  any case ,  t h i s  approach is  only 15 16  

A r a t h e r  d i f f e r e n t  means of u t i l i z i n g  experimental  v i b r a t f o n a l -  

r o t a t i o n a l  ene rg ie s  t o  determine in t e ra tomic  p o t e n t i a l s  has  been proposed 

by Bernseein.” 

long-range p o t e n t i a l  t a i l  t o  t h e  observed breaking-off of r o t a t i o n a l  series 

due t o  p r e d i s s o c i a t i o n  through t h e  c e n t r i f u g a l  p o t e n t i a l  b a r r i e r .  

H e  der ived  an express ion  r e l a t i n g  t h e  na tu re  of che 
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This is d iscussed  f u r t h e r  i n  p a r t  V of Chapter 7, 

A l l  of t h e  methods d iscussed  up t o  t h i s  po in t  use v i b r a t i o n a l -  

r o t a t i o n a l  e igenvalue  d a t a  t o  determine attractive p o t e n t i a l  w e l l s .  

On t h e  o t h e r  hand, t h e  frequency and temperature  dependance of t h e  

i n t e n s i t y  of abso rp t ion  o r  emission i n t o  t h e  continuum region  above t h e  

molecular d i s s o c i a t i o n  l i m i t  can i n  p r i n c i p l e  y i e l d  pu re ly  r e p u l s i v e  

p o t e n t i a l  func t ions ,  o r  t h e  short-range r e p u l s i v e  p a r t  of a t t r a c t i v e  

p o t e n t i a l s .  of t h e  review by 

Mason and Monchick,18 and eyamples of more r e c e n t  work are t h e  present  

Refs.  (19-24). While i t  shows promise,  very few p o t e n t i a l s  have as ye-t 

been obta ined  i n  t h i s  manner, and coqclus ions  regard ing  t h e i r  uniqueness 

and accuracy should await f u r t h e r  i n v e s t i g a t i o n s .  

This  approach is  d iscussed  i n  p a r t  TTIC 

A more e f f i c i e n t  u t i l i z a t i o n  o f  continuum absorp t ion lemiss ion  

i n t e n s i t i e s  i s  i n  conjunct ion with t h e  results of a v e l o c i t y  a n a l y s i s  of 

t h e  pho tod i s soc ia t ion  products .  

t a i n a b l e  by t h e  techniques developed by Wilson and co-workers .25 While 

too new t o  have become a widely used t o o l ,  t h i s  development25 is  very 

p r o p i t i o u s .  

The la t ter  have r e c e n t l y  become ob- 

4.2 U T I L I Z I N G  NON-SPECTROSCOPIC DATA 

The spec t roscop ic  methods considered above are e s s e n t i a l l y  com- 

plementary t o  most o t h e r  procedures  f o r  determining p o t e n t i a l s .  This is 

because t h e  s e l e c t i o n  r u l e s  f o r  o p t i c a l  t r a n s i t i o n s  a l low t h e  s tudy of 

i n d i v i d u a l  p o t e n t i a l  curves  among t h e  profus ion  of molecular states which 

arise from t h e  i n t e r a c t i o n  of atoms with u n f i l l e d  va lence  s h e l l s .  
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I n  most o t h e r  methods, a l l  e n e r g e t i c a l l y  a c c e s s i b l e  states c o n t r i b u t e  

concurren t ly  t o  t h e  experimental  observables .  Thus, t h e  non-spectroscopic 

methods may only b e  effect ivel i  app l i ed  t o  t h e  s tudy  of i n t e r a c t i o n s  i n  

which a t  least one of t h e  atoms is a c losed-she l l  ( iner t -gas)  spec ie s ,  as 

only then  do t h e  p a r t i c l e s  have j u s t  a s i n g l e  p o s s i b l e  p o t e n t i a l  curve. 

However, t h i s  is t h e  type  of system f o r  which t h e  attractive p o t e n t i a l  

w e l l  w i l l  b e  r e l a t i v e l y  shal low,  suppor t ing  few v i b r a t i o n a l  levels,  and 

is thus  least appropr i a t e  f o r  s tudy by t h e  WKB-based methods of 

Chapters 2 and 3 ,  

Molecular Beam Techniques 

The de termina t ion  of i n t e ra tomic  p o t e n t i a l s  from molecular beam 

18,26-36 s c a t t e r i n g  measurements has  l a t e l y  rece ived  cons iderable  attention. 

The measurements are of two d i s t i n c t  k inds .  

a n a l y s i s ,  h igh  energy ( c o l l i s i o n  ene rg ie s  E of - ca. 1-100 eV) e las t ic  

s c a t t e r i n g  y i e l d s  information on t h e  short-range r e p u l s i v e  f o r c e s  i n  a 

Using a s imple classical 

reg ion  i n a c c e s s i b l e  t o  spec t roscopic  measurements. Accurate  work of t h i s  

t y p e  has been done s i n c e  1940 and i s  w e l l  reviewed elsewhere.  26,32 

S c a t t e r i n g  d a t a  obta ined  a t  thermal  ene rg ie s  (E < Oa3: eV) may b e  
v 

used t o  determine both  t h e  long-range attractive p o t e n t i a l  t a i l ,  and t h e  

gene ra l  f e a t u r e s  of a p o t e n t i a l  w e l l ,  me former may be  e x t r a c t e d  

from t h e  a b s o l u t e  va lues  of t h e  t o t a l  e l a s t i c  c r o s s  s e c t i o n ,  i n  t h e  form 

of t h e  c o e f f i c i e n t  C- of t h e  asymptotically-dominant inverse-power 

p o t e n t i a l  term ( i n  cases where only one p o t e n t i a l  i s  involved,  n=6).  

I n  t h i s  way C6 coas t an t s  have been obta ined  f o r  a wide v a r i e t y  of 

n - 
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systems. 299 33 The c h a r a c t e r i s t i c s  of a t t r a c t i v e  p o t e n t i a l  welds may be 

obtained from an a n a l y s i s  of t h e  quanta l  f e a t u r e s  of t h e  angle  and energy 

dependence of t h e  c ross  sec t ion .29934  This  is  u s u a l l y  done by assuming 

a p l a u s i b l e  two- o r  three-parameter model p o t e n t i a l  and varying t h e  para- 

meters u n t i l  t h e  experimental  r e s u l t s  are reproduced. I n  t h i s  way, 

approximate va lues  of t h e  w e l l  depth and min$mum p o s i t i o n  have been 

obtained f o r  a number of systems. 29933 I n  p r i n c i p l e ,  however, an exact  

i n v e r s i o n  of t h e  experimental  da t a  t o  y i e l d  a c c u r a t e l y  t h e  whole of t h e  

p o t e n t i a l  w e l l  is  a l s o  poss ib l e .  30 s35 However, i n  p r a c t i c e  t h i s  type 

of approach has  very  s t r i n g e n t  d a t a  requirements,  and c u r r e n t l y  has 

been s u c c e s s f u l l y  appl ied  t o  very few systems. 36 -. , 

Bulk P r o p e r t i e s  

There ex is t s  a very ex tens ive  l i t e r a t u r e ,  a c c e s s i b l e  through 

R e f s . ( l , .  18, and 37-39),  which contemplates t h e  e x t r a c t i o n  of i n t e r +  

molecular p o t e n t i a l s  from v i r i a l  c o e f f i c i e n t s  and t ransport t  p r o p e r t i e s  

of gases .  

c a l c u l a t e s  t h e  des i r ed  p rope r t i e s  from s t a t i s t i c a l  mechanics .,I and then 

v a r i e s  t h e  p o t e n t i a l  parameters and r epea t s  t h e  calculatdon u n t i l  t h e  

I n  t h i s  work, one u s u a l l y  assumes a model p o t e n t i a l  func t ion ,  

b e s t  p o s s i b l e  agreement with experiment i s  obtained.  However, s i g n i -  

f i c a n t  ambigui t ies  can occur; f o r  example, i t  i s  w e l l  known t h a t  t h e  

second v i r i a l  c o e f f i c i e n t s  of a number of simple molecules are f a i r l y  

having i n  common only t h e  area of t h e i r  p o t e n t i a l  w e l l s .  '9" ~t i s  only 

r e l a t i v e l y  r e c e n t l y  t h a t  q u a n t i t a t i v e  s t u d i e s  of these  ambigui t ies  have 
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been made. 38939 

should b e  c a r e f u l l y  considered whenever a h igh  degree of accuracy i s  

expected. 

is  a very  important source  of information on in te rmolecular  f o r c e s .  

However, only i n  a few cases 

do t h e  p o t e n t i a l s  ob ta ined  approach "spectroscopic"  accuracy 

It is  apparent  t h a t  t h i s  uniqueness problem 

Despi te  t h e s e  d i f f i c u l t i e s ,  t h e  a n a l y s i s  of bu lk  p r o p e r t i e s  

where t h e  d a t a  are p a r t i c u l a r l y  ex tens ive  

40 

Another macroscopic proper ty  which can y i e l d  approximate p o t e n t i a l  

w e l l s  i s  t h e  equi l ibr ium cons tan t  between t h e  molecular s ta te  and t h e  

d i s s o c i a t e d  atoms. For an assumed parameter ized p o t e n t i a l  form, t h e  

unknowns may b e  determined from i ts  abso lu te  va lue  and temperature  

dependence. 

l i b r ium cons tan ts  e x t r a c t e d  from chemical rate measurements, and wh i l e  

t h e  p o t e n t i a l  obtained is q u i t e  crude,  b e t t e r  estimates may n o t  b e  

a v a i l a b l e  from o t h e r  sources .  An example of t h i s  type  of problem is  

t h e  de te rmina t ion  of t h e  I -Ar  p o t e n t i a l  from atomic iod ine  recombination 

This  t ype  of procedure m a y  sometimes b e  app l i ed  t o  equi- 

measurements, p resented  i n  Appendix B. 

Addenda 

I n  al i i t i o n  t o  t h e  f e a t u r e s  discusse,  above, information on i n t e r -  

atomic p o t e n t i a l s  may b e  e x t r a c t e d  from a number of o t h e r  p h y s i c a l  

p r o p e r t i e s ,  inc luding  thermal  d i f f u s i o n  i n  gases  and t h e  p r o p e r t i e s  of 

condensed phases .  18' 38341 However t h e s e  are c u r r e n t l y  less widely used 

than  t h e  techniques a l r eady  mentioned, and t h e i r  omission does no t  

d e t r a c t  from t h e  p re sen t  purpose of p u t t i n g  t h e  spec t roscopic  mekhods 

of Chapters 2 and 3 i n t o  pe r spec t ive ,  
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5 TESTING AND CORRECTING A GIVEN POTENTIAL: GROUND-STATE (X '1:) H2 

The accuracy of most empir ica l  o r  ab i n i t i o  p o t e n t i a l s  i n  t h e  

reg ion  V(R) < 0 may be  t e s t e d  by c a l c u l a t i n g  t h e i r  v i b r a t i o n a l  eigen- 

va lues  and comparing them t o  experiment. Discrepancies  may t h e n  b e  

accounted f o r  i n  terms of e r r o r s  i n  t h e  p o t e n t i a l ,  and a s u i t a b l e  

c o r r e c t i o n  f u n c t i o n  der ived .  When t h i s  w a s  done (below) f o r  the 

t h e o r e t i c a l  ground-state  H p o t e n t i a l  of Kokos and Wolniewicz two 

p o s s i b l e  co r rec t ions  A ' and A" were der ived ,  corresponding r e s p e c t i v e l y  

t o  assuming t h e  ex i s t ence  of e r r o r  i n  e i t h e r  t h e  experimental ,2  o r  

3 t h e  t h e o r e t i c a l  d i s s o c i a t i o n  energy. 

have s i n c e  reso lved  t h i s  choice  i n  favor  of t h e  l a t te r ,  s o  t h e  correc-  

2 

Herzberg's new measurements 

t i o n  func t ion  A '  and i ts  impl i ca t ions  should now be  ignored. 

accuracy of t h e  proper  c o r r e c t i o n  func t ion ,  A", i s  discussed f u r t h e r  

i n  p a r t  I V  of Chapter 7.  

The 

The work presented  below i s  r e p r i n t e d  from t h e  Jou rna l  of 

Chemical Physics ,  Volume 49, pp. 4312-4321 (American I n s t i t u t e  of 

Physics ,  New York, 1968).  
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k .  

In an attempt to elucidate the discrepancy between the theoretical and experimental dissociation energies 
of I&, accurate binding energies and term diflerences have been computed for the 15 vibrational levels 

possible interpretations of the discrepancy. In one of these an extrapohtion method is introduced which 
combines experimental term differences with computed binding energies for the uppenno@ levels to yield 
the dissociation energy; this result is in accord with the experimental value of Herzberg $d Monfils. The 
effect of uncertainties in the values of the natura1 constants is considered. Apparent inCOn@tenCieS between 
previously computed vibrational energies are explained. 

I using the Kolos and \Volniewicz clamped-nuclei potential with its various corrections. The results suggest 

! 

Considerable attention has been devoted to the prob- 
lem of accurate ab initio computation of the dissocia- 
tion energy and vibrational terms of the various isotopic 
forms of hydrogen. For the best studied case of ground- 
state Hz, a discrepancy of some 4 cm-l exists between 
Herzberg and Monfils’ possible experhefltal value of 
the dissociation energy,’ 36 113.6(&0.3) cm-’, and the 
“fully corrected” theoretical value of Kolos and Wol- 
niewicz (KW),2 36 117.4 cm-l. This discrepancy is 
especially serious since the theoretical value is a vari- 
ational result (except for -0.2 cm-l due to the radiative 
correction) and is thus expected to be a lower bound. 
A serious but less publicized discrepancy exists between 
the observeda and computed2.cg vibrational term differ- 
ences; the experimental AG*yg values (accurate to 
f0.05 cm-I) differ with the calculated ones by an 
accumulated total of -4 cm-I over the 15 vibrational 
levels. It is not clear whether or not these two dis- 
crepancies are related. 

In the present study, the computed vibrational spec- 
trum is used as a measure of the local accuracy of the 
theoretical potential. Corresponding to two of the pos- 
sible interpretations of the source of the disagreement 
between theory and experiment, two empirical “correc- 
tion functions” to the KW potential are presented for 
consideration. I 

* Research su ported by National Science Foundation Grant 
GP-7409 and d t i o n a l  Aeronautics and Space Administration 
Grant NsG-275-62. 

6. Herzberg and A. Monfils, J. Mol. Spectry. 5, 482 (1960). 
The value given corresponds to the B’(IZ,,+) assignment of the 
upper state of the observed transition. Their alternate assign- 
ment, the C(lIIu) state corresponding to D0=36 113.0(& 0.3 cm-I), 
is made very unlikely by ub iaitio computations of the potential 
for this state which show it to possess a barrier with a maximum 
of -100 cm-1. 

2 (a) W. Kokos and L. Wolniewicz, Phys. Rev. Letters 20, 243 

a G. Herzberg and L. L. Howe, Can. J. Phys. 37, 636 (1959). 

* J. D. Poll and G. Karl, Can. J. Phys:44, 1467 (1966). ’ T. 6. Waech and R. B. Bernstein, J. Chem. Phys. 46,4905 

D. F. Zetik and F. A. Matsen, J. Mol. Spectry. 
‘F. M. Greemwalt and A. S. Dickjnson, J. 

(1968) ; (b) J. Chem. Phys. 49,404 (1968). 

J. K. Cashion, J. Chem. Phys. 45,1037 (1966). 
L. Wolniewicz, J. Chem. Phys. 45,515 (1966). 

(1967). 
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11. METMO 

. Vibrational Eigenvalues as a Local Test 
Accuracy of a wtential 

For any given diatomic int$muclear potential, exact 
bound-state eigenfunctions an$ eigenvahes may be effi- 
ciently computed.&12 In addition, it may be shown 
(see Appendix A) that a givfn eigenvalue is especially 
sensitive to small changes in the potential in the im- 
mediate neighborhood of its two turning points %(D) 
and RZ(v) .  For the higher levels, this dependence is 
increasingly weighted towards the outer turning point 
Rz(v). The inverse problem of deriving a potential 
“correction function” which $odd remove the differ- 
ence between computed and o$served energies may also 
be solved uniqu-ely, provideuthat the maximum error 
in the original theoretical pqtential is everywhere rea- 
sonably small. The results in’ Appendix A indicate that 
this inversion is possible for Hz if the E W  potentiaPJ3J* 
is accurate to better than about 10 cm-l over the range 
of the turning points of the 15 vibrational levels. That 
this is the case is shown by the approximate (AS cm+) 
agreement between its computed eigenvalue spectrum 
and experiment. ‘ 

. Method of Comparing Computed and Observed 
Eigenvalues 

The customary comparison of computed and ob- 
served vibrational-rotational energies via the quantity 
To(v, J ) = [ T ( v ,  J ) - T ( 0 ,  O ) ]  (e.g., Ref. ’I) is un- 
desirable here, since it assumes that the absolute value 
of the energy computed for the ground (a=O, J=O) 
state agrees with experiment. A better approach would 
be to compare the binding energies” & ( a ) .  However, . 
the f 0 . 3  cm-l uncertainty in the experimental 

e 

IO J. W. Coolcy, Math. Computation 15,363 (1961). 
J. R. Cashion, J. Chem. Phys. 39, 1872 (1963). 

I*H. Harrison nnd R. B. Bernstein, J. Chem. Phys. 38, 2135 
(1963): 47. 1884 (1967). Erratum. 
. la W.’Kdos and’L. Wblniewicz,-J. Chem. Phys. 41,3663 1964). 
14 W. Kotos and L. Wolniewicz, J. Chem. Phys, 43,2429 i1965). 
16 Throuahout. the “bindins! enerm” of a &en level is the 

energy didrence between th i t  leverand the-wymptote of the 
potential while “dissociation energat” &ea to the bindig 
energy oi the 090, $4 level. 
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would yield esperimentd binding energies with un- 
certainties too great for the current analysis. 

The present approach combines the accurilt e ohserved 
vibrational spacings (reported to 0.01 cm-l) with the 
precise binding energies cotnpded from the best avail- 
able potential. As is illustrated in Fig. 1, the experi- 
mental and computed levels for a given v are matched, 
and the computed binding energy is added to the 
experimental Vibrational energy to yield an "appar- 
ent" ground-state dissociation energy, defined DO( v) = 
[E~(v)+T'o(v, O ) ] .  If the theoretical potential were 
exact, the curve of Do(u) vs v would be horizontal at 
the true dissociation energy since the difference be- 
tween each l l o ( ~ )  and the true DO is merely the error 
in the computed &(v). Otherwise, [Do(v+%) -Do(v)] 
is the negative of the error in the computed AG,+llz so 
that a Do(v) curve is effectively a second-order Birge- 
Sponer plot with unknown ordinate zero, It will be 
seen (in Sec. 1V.B) that under certain conditions this 
type of plot may be used in an extrapolation procedure 
to yield the 4. 

111. CfiCULATIONS 

A. Computation of Vibrational Energies 

Vibrational eigenvalues were obtained by solving the 
radial Schrodinger equation numerically using a modi- 
tied version of the Cooley-Cashion program.'OJ1 (See 
Appendix B for a comparison of this with the Harrison 
and Bernstein12 and Zetik and Matsene" methods.) 

The integration is performed on the equation ex- 

34300.1 c2.31 

FIG. 1. Derivation of Do(u) values by matching computed and 
observed levels at ~ ~ 1 4 .  The number 36 112.07 [Le., D0(14)] 
would equal the dissociation energy if the computed value of 
4(14) were exactly correct. Here the E&) were obtained for the 
relativistic, adiabatic W potential (using nuclear reduced mass), 

pressed in the rcduced form 

((12Y/dzZ) +&[E*+ V" ( a )  ] Y= 0, (1) 

where a- R/Rm, U ( z )  = a x @ ) ,  E*= E/E,  V*(e) = 
V ( R ) / e ,  and B,= 2~cR,,,~/21~; the parameters R m  and 
c are arbitrary scaling f (usually chosen close to 
R, and De). The reduced ss used for most of the 
computations was that fo o protons. Despite the 
contrary arguments of C this appears to be the 
correct choice of mass Eq. (1) describes the 
motion of the nuclei in ctive potential arising 
from the field of the electrons. The total potential V ( R )  
includes the usual clamped-n lei and centrifugal po- 
tentials, and for most of the galculations it contained 
the relativistic and nuclea on (adiabatic) correc- 
tions as well. The integr carried out over the 
interval 0.4s RS 10 a.u. increment used (the 
"mesh size") was 0.00 anding the interval 
or decreasing the mesh size affected the eigenvalues 
negligibly (i.e., by <0.01 a+). 

The required physical constants are all collected in 
the factor B,=3.64566X103~~rn2(f0.5X10-a %),= 
where p is the reduced mass in "unified" atomic mass 
units (12C=12), and E and are both expressed in 
atomic units. The effect on the eigenvalues of error in 
the physical constants is tempfered by the radial kinetic- 
energy factor TK=[E-V(Z&] with which B, is com- 
bined in Eq. (1). To a firftrt approximation, a given 
error in B,, say AB,, introddces an error 

Y 

A&= - (A&/&) {v I TK I 0 )  ( 2) 

to the computed energy for level v. The kinetic energies 
{v I TK I v )  (e.g. those later presented in Table 111) 
cause the effect of error in the physical constants to 
diminish for levels approaching either the top or the 
bottom of the well, while reaching a maximum about 
9 of the way up. An adjustment of the electron m;tSs16**S 
changing B,  by one standard error (=t0.SX1&3 %) 
affects the H2 vibrational energies for levels 6-11 (where 
(v I TK I u) is greatest) by -30.06 while affect- 
ing the v=O energy by less than FO.01 cm-'. 

B. Effect ob Interpolation on Eigenvalue Precision 

The KW clamped-nuclei potential for H2 was re- 
ported at 87 points in the interval 0.4<R<10 a.u.$ 
while -1500 points are needed in the numerical inte- 
gration. The interpolation between the given points is 
therefore very critical, and indeed appears to be the 
major source of eigenvalue imprecision. 

'8 With p ,  E, and R, expressed in unified atomic mass units 
(1*C = 12) and atomic units, the numerical part of B, is just 2/tn, 
where m, is the electron mass in atomic mass units. The uncer- 
tainty is the standard error in the best known value of me>' 
The uncertainties in the nuclear and atomic reduced mass of Ha 
(p=0.50363831 and 0.50391261 atnu, respectivelyt7), contribute 
negli 'ble error to B,. 

R. Cohen and J. W, DuMond, Rev, Mod. Phys. 37, 53'9 17 

(1965). 
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The accuracies of several interpolation schemes were 
tested by omitting in turn each of the computed HW 
clamped-nuclei points, and comparing the ith omitted 
value V m ( R i )  to that obtained by interpolation over 
the remaining data, Vint(Ri). All of the methods used 
were piecewise fits which selected an equal number of 
the given points from either side of the desired value. It 
is clear that interpolating over {Ri2Vmv(R;) (as sug- 
gested by Poll and Karla) rather than oirer { V m ( R i )  ) 
significantly improves the results. The interpolations giv- 
ing rise to the differences AVt=rVm(Ri)  - Vint(Ri)] 
in Fig. 2 used 85 of the KW1* points, the entries at 
R- 1.400 and 1.401 a.u. being omitted.la Figure 2 also 
shows the effect on the computed eigenvalues of using 
different interpolation schemes, the bicding energies 
obtained via the piecewise seventh-degree polynomial 
interpolation over {RPVKW(RI) 1 being used as a refer- 
ence. The precision of the best results is -=tO.O2 cm-'. 
Combining this interpolation imprecision with the un- 
certainty in B,  shows that the accuracy with which 

*aThe KW points at 1.400 and 1.401 a.u. were omitted from 
the interpolations since their inclusion yielded an anomalously 
high density of data in this region, producing erroneously large 
errors (large AVi) at adjacent points interpolated using the 
higher-order (seventh- and ninth-order) polynomials.'$ The 
removal of these two values changed the potential yielded by the 
piecewise seventh-order-polynomial inte olation enough to 
increase the binding energy of the v=Oyevel by 0.035 cm-1, 
though it nffectcd higher Ievela by less than 0.01 crn-1. 

l'he Lngrnnginn interpolation subroutino of R. N. Xnrc 
CUniverelt of Culifornia Hndiatlon Laborato Report, UCI<C. 
10925, I d ,  (unpublished)} was used for $of our piecewise 
po~ynomial interpolations. 

Case A uses eight oint third-order spline 
fib; Case B uses &th-order polynomials; 
Case C us= Mventh-order polynomials* 

th-order lynomials; ad 
analytic gmula of R ~ L  7. 

v 

our computed eigenvalues "rdect'' the KW potential 
lies within the limits f0.03 (for v= 0) and f0.08 
cm-l (for v=6-11). 

The differences AVi in E r t s  A-D of Fig. 2 are, 
however, considerably larger than the actual error in 
V ( R )  carried into the eigenvalue calculation, since the 
interpoiated potential actually used is constrained to 
pass through all the KW points. In Part E, on the 
other hand, the differences AVi are the actual errors 
in the analytical potential% of Ref. 7. 

C. The Total Potential V(R)  

In the present work a smooth clamped-nuclei poten- 
tial was obtained in the interval 0.45_<R<9.0 a.u, 
using a series of seventh-order-polynomial fitsl9 over 
{R~*VKW(RI)  1 to 85 of the 87 KW (1965) points. 
At the ends of this range where the numerical inter- 
polation becomes least accurate (see Fig. 2) the poten- 
tial was extrapolated analytically. For R<0.45 8.u. it 
was approximated by a function of the form V(R)= 
A/RB+C, where the three constants were determined 
by fitting the function to the three KW points a t  
smallest R. For R29.0 a.u. the potential was repre- 
sented by a theoretical five-term analytical expression 
derived from perturbation theory. The Ce, Ca, CIO, and 

The analytic fit of Ref. 7 [using tho method of G. E, Poreythe 
J. Soc. Xnd. Apple Mnth. 5, 74 (1957)j of the wllolc polcntiai 
to a eingic polynomial cxpretrsion of 32nd dcgrea in of course not 
constrained to give precise agreemcat with all 89 =port& KV/Q 
values. 

. 
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TABLE I. Difference between KW clamped-nuclei-potential* and perturbation-theori resa1ts.b 
" 

R(a.u.) 7.0 7 . 2  7.6 7.8 8.0 8.25 8.5 9/0 9.5 10.0 

E p r b n - E ~ w ( ~ - l )  2.2G 1.27 0.72 0.53 0.24 0.11 0.13 -0.15 -0.11 0.11 
- EKW (cm-1) 41.56 31.47 19.05 14.97 11.740 8.87 6.89 +06 2.66 2.00 , 

** 

* Reference 14. Reference 21. Reference 22. 

Cu inverse-power potential constants and the esponen- 
tial expression for the exchange contribution were taken 
from Hirschfelder and Meath.2' Table I shows the 
agreement between the KW potential and the above 
estrapolation over the range R= 7-10 a.u.% Since these 
long-range (for 9_<R_< 15 a.u.) and short-range (for 
0.405R<5.45 a.u.) extrapolations are applied to R 
values outside the range of the classical turning points 
of the highest vibrational level 14)=0.78 a.u. 
and R2(14)=6.2 a.u.1, any errors they introduce are 
expected to produce a negligible effect on the eigen- 
values. 

Series of third-order polynomials were used to inter- 
polate between the KW values of the relativistic and 
nuclear motion (adiabatic) corrections. Beyond the 
range of their computations, the relativistic correction 
at large R and the adiabatic correction at small R were 
extrapolated using analytic errors in which 
would at  worst introduce errors of -0.53 cm-I in the 
computed eigenvalues for levels above v= i f .  In addi- 
tion, the adiabatic correction at  large R was approxi- 
mated by an exponential fitted to pass through the 
last two values at  finite R and decaying to the asymp- 
tote. Although other workers2g6+6 have used significantly 
different extrapolations, the exponential tail seems most 
reasonable in view of its excellent qualitative agreement 
(see Fig. 3) with the correction computed from the 
expressions derived by Van Vle~k.~' Inaccuracy in this 

*'J. 0. Hirschfelder and W. J. Meath, Advan. Chem. Phys. 
P2,3 (1967). 

*2 I t  has been ointed out by P. R. Certain, J. 0. Hirschfelder 
W. KO~OS, and E. Wolniewicz 0. Chem. Phys. 49, 24 (1968)j 
that a calculation using an improved basis set of electronic wave- 
functions lowers the RWI4 clamped-nuclei energy a t  8.0 a.u. by 
0.15 cm-' to -11.74 ern-'. This improved value was used in 
Table I. It should be remembered that the estimated rounding 
errors in the single-precision KW clamped-nuclei results were 
stated to be f0.1 cm-1. 

za The relativistic correction at large R was approximated by 
an exponential fitted to the last two KW points a t  finite R and 
decaying to the asymptote, a distance of 0.42 cm-1. The adiabatic 
correction for X<0.6 a.u. was extrapolated by an exponential 
fitted to pass through the two KW oints a t  smallest R (absolute 
values were used in this fit; cf. vayues expressed relative to the 
asymptote). Since the latter extrapolation begins a t  0.6 a.u. < 
Rs(14)=0.78 a.u., it  could introduce only negligible errors to 
the computed eigenvalues. 

24 J. H. Van Vleck, J. Chem. Phys. 4,327 (1936). Although the 
Wang electronic wavefunction used by Van Vleck is relatively 
inappropriate at small R, it becomes increasingly suitable as R 
increases through the region in question and is almost exact at 
the asymptote. Values of the Wang function's variational expo- 
nential arameter were derived by extra olating over the values 
reportejby J. 0. Hirschfelder and J. W. Einnett u. Chem. Phys. 
1& 130 (1950)l. Equation (Si) in this paper by Van neck 
contains an extraneous factpr of b? 

extrapolation could at wo 
cm-I in the eigenvalues 
v=  10. 

introduce errors ot 4 . 5  
mputed for levels above 

i ID. The Wonadiabatic Correction 

The nonadiabatic correctiop to the eigenvalues ark- 

electronic states was appro$mated by a formula de- 
rived by Van Vlecka (and jecently used by Poll and 

turbation energyp and by using an Unsijld approxima- 
tion and summing over complete sets of vibrational 
and electronic states yields the following errpression: 

ing from the coupling of th$ ground state to excited 

Karle). This treatment stads with a second-order per- 

* i  

4 

where vo is the Unsold enegy, TK is t.he radial kinetic 
energy, and the ,third factor is an expectation value 
over the electronic coordinates of the ground state, 
evaluated with the nuclei separated by Re= (v I R I v ) .  
This factor is one of those contributing to the adiabatic 
correction, for which Van Vleck had derived an analytic 
expression. The value initially chosen for the Unsold 
energy, VO= 1.35X io6 cm-l, was derived26 froiii consider- 
ation of sums of a different type of matrix element and 
may be somewhat inaccurate. It may be more correct, 
too, to replace vo by vo=[vo-To(~,  O ) ] .  The expecta- 
tion values (v I TK f v)'are readily evaluated from the 
radial wavefunctions which are obtained from the eigen- 
value calculation. 

1v. RESULTS 

A. Sources of Disagreement of Previous 
Computed Eigenvalues 

Several calculated sets of vibrational eigenvalues for 
the KW potential have alseady been published>- 
Waech and Bernstein7 compared those results sup- 
posedly based on the clamped-nuclei potential and 
found discrepancies of up to 12 cm-I. Upon further 
study it appears that these differences result from the 
use of slightly different potentials and physical con- 
stants. The most prominent single effect is due to the 

25 J. H, Van Vleck and A. Frank, Proc. Natl. Acad. Sci. (W.S.) 
IS, 539 (1929). 
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0 36 118.0 36 117.9 0.0 36 117.4 0.0 
t 18.1 17.0 0.1 16.4 0.1 - -_- 
2 18.2 1612 0.1 15.6 0.1 
3 17.7 14.9 0.1 14.3 0.1 
4 17.6 14.0 0.1 13.4 0.1 
5 17.3 13.3 0.2 12.7 0.2 
h 17.0 12.4 0.2 11.8 0.2 - _. ~ - 
7 16.6 ii17 0.2 11.2 0.2 
8 16.2 11.2 0.2 10.6 0.3 
'9 15.8 10.7 0.2 10.2 0.3 
10 15.3 10.3 0.3 09.9 0.3 
11 14.7 10.1 0.8 09.7 0.2 
12 13.9 10.1 1.8 09.7 -0.2 
13 13.4 10.6 * 10.3 -0.6 
14 13.6 12.2 12.1 -0.4 

36 112.8 0.0 0.2 
11.5 0.0 0.4 
10.5 -0.1 0.4 
09.1 -0.5 0.6 
08.3 -0.9 0.6 
07.7 -1.6 0.6 
07.2 -2.8 0.7 
07.0 -4.5 0.7 
07.0 -7.5 0.6 
07.3 -11.9 0.6 
07.7 0.6 
08.3 0.5 
08.9 0.4. 
10.0 0.3 
12.0 0.2 

36 112.2 0.0 -1.0 
09.8 0.0 -1.1 
07.9 0.0 -1,l 
05.7 0.1 -1.0 
04.2 0.1 -1.3 
03.0 0.1 -1.9 
02.0 0.1 -3.0 
01.5 0.1 -4.6 
01.4 0.1 -7.6 
01.7 0.1 
02.3 0.1 
03.4 0.2 
04.7 0.2 
06.9 
10.5 

a L\, is &he amount (in cm-I) by which the previously reported E&) 
{and hence Do(o(o)] exceeds that computed here for the name case. Aw 
comparee present results to those of Wolniewlcd; APK Cdmpatee with 
Poll and Karla; &y comparea with Cashton@; and AWE compares with 

Waech and Betnstein.7 The parameter i denotes a particular choice of 
potential and reduced maw: I-1: rela~vistlo adiabatic. & atomic; 2: 
nonrelativistic. adiabatic, p nudear; 3: relativietlc, adiabatic, p nucleapy 4: 
clamped nuclei, p atomic) ~ n d  5: clam 

I I 

- 
'E 

E& 

V ... 
b 

FIG. 4. DJJ){v) curves lotted from the 
results in Table II. 'de curves weie 
derived by piecewise interpolation with 
series of second-order polynomials. The 
"bumps" at 0==2 are explained inlSec. 
IV.A. 
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use of different values for the reduced mass; in some 
of the studiesq.7 the atomic rather than the nuclear 
masses were used.26 The various possible cases have 
now been analyzed and sets of apparent dissociation 
energies Do(~( (o )  have been computed for five of them 
(i=lp - - e p  5 ) .  These are plotted in Pig. 4 and are 
conipared to the previously published rcsults in Table 
11. The causes of the remaining differences A between 
the present results and those reported previously for 
the same case, are given below. 

The largest differences, A c  and ApK(id), both arise 
from their use of the earlier (1964), Iess-accurate ver- 
sions13 of the clamped nuclei potential.n In AW(~]  and 
ApKCa, the escalating deviance above v=  0 corresponds 
to the use of extrapolations of the nuclear motion cor- 
rection differing markedly from that used here. The 
linear extrapolation of Wolniewicz6 (Awcz)) is shown by 
Fig. 3 to be much too coarse. 

The remainder of Aw(2) and APK(~)  as well as Aw(6) 
and much of AWB may be quantitatively explained in 
terms of the effect of error in the physical constants, dis- 
cussed in Sec. 1II.A. Wolniewicz,6 Poll and Karl: and 
Waech and Bernsteinl used values of B, which were all 
too largG8 by, respectively, 1.3XlWa %, 1.2X1ka %, 
and 8.7X1Wa %. Upon substituting these differences 
into Eq. (2) along with the kinetic energies from Table 
111, most of the given A’s are explained, except that 
portion of AWB which Fig. 2 shows to be due to the 
Waech .and Bernstein interpolation procedure. Some 
small errors in the earlier work are also due to the use 
by Waech and Bernstein’ and Poll and Karl6 of inte- 
gration meshes two,and three times larger than used 
here. 

The differences between results calculated using the 
same potential but slightly different reduced masses 
(e.g., compare.cases i= 1 and 4, respectively, to i = 3  
and 5 )  are also quantitatively explained in terms of 
the effect of the difference in reduced mass on the B, 
factor. Changing from nuclear to atomic reduced mass 
increases B, by 0.0545%, which when substituted in 
Eq. (2) yields the observed differences. 

Since none of the curves in Fig. 4 are flat, none of 
the sets i= 1, * * e I  5 yield vibrational spectra in agree- 
ment with experiment; also, the relativistic adiabatic 
y-nuclear (i=3) curve which should be best appears 
worse than the corresponding #-atomic case (d- 1). 

18 We are indebted to Dr. T. G. Waech for bringing this to our 
attention. 

%Poll and Karla (APE(&)) used the energies computed with 
54-term electronic wavefunctions over the whole of the interval 
0.45R53.7 a.u., and Cashion4 (Ac) added to these the more 

. accurate potential energies re orted in the more restricted 
interval about the minimum 0.5f5R52.0 a.u. 

With the Cohen and DuMond17 constants as a reference, 
Wolniewicz6 used a reduced mass which is 4 . 3 X  1W % too large, 
Poll and Karl6 used a value of the Bohr radius 0.6)<10-8 % too 
large, and Waech and Bernstein? used values of Planck’s constant 
and the Bohr radius which were, respectively, 6.X101 % too 

9.XlW % too large. 

TABLE 111. Results from the 1968 relativistic 
adiabatic KW potcntial.8 

i 

W Eb[e)h Do(0) XW 1 T K  ID) AE(U) AE’(V) 
* 

0 36 117.54 36 117.5 d 079. -0.65 -0.65 
1 31 9.55.44 1C.6 3 040. -1.83 -1.89 
2 28 028.78 15.8 4 770. -2.89 -3.07 
3 24 332.61 15.0 6 275, -3.82 -4.19 
4 20 863.88 14.2 7 555. -4.59 -5.17 ! 

5 17 G2l.61 13.5 8 W .  -5.15 -5.97 
6 14 607.10 12.8 9 427. -5.67 -6.74 ‘ 
7 11 824.31 12.1 9 996. -6.03 -7.35 

‘ 8  9 280.42 11.4 10 292. -6.27 -7.82 
9 6 986.80 10.7 10 278. -6.33 -8.07 

10 4 960.09 10.3 9 904.. -6.16 4 . 0 1  
11 3 223 + 20 10.1 9 098. -5.69 -7.53 
12 1 808.15 10.0 7 754. -4.84 -6.49 
13 759.48 10.5 5 713. -3.51 -4.76 
14 139.16 12.1 2 755. -1.65 -2.24 

All energies are in cm-1. The ki$tic energiea are approximately the 
same as for caws i-1. *, 5 in Tab’# 11. AE(u), the nonadiabatic correc- 
tion to the energy. ia the negative of the correction to thc binding energy 
and to Do(u). The nnprimed nonadiabatic correction was evaluated using 
YO and corresponds to Curve B in Fig. 5, while AE’(v) was evaluated 
using the adjusted Unsold energies 1. and yielded Curve C 

As indicated In Seca 1II.A and II1.B. these eigenvalues reflect the 
KW potential with accuracies ranging &om f0.03 cm-1 to f0.08 em-’. 
They may not be directly compared to&e most recent KW results* Since 
the latter did not include the relativistic forrection in the effective potential. 

8 

I 

- 

The addition of the nonadi&batic correction improves 
the situation, but it will befshown that results for the 
theoretically best case still do not yield the observed 
vibrational ladder. 

All of the curves in Fig. 4 exhibit an anomalous 
“bump” at v = 2  which is due to small errors in the 
Herzberg and Howe3 energies for v = l  and 2.29 These 
have been remeasured30+ and the most recent data” 
give To(& 0)=4161.181 cm-l and To(2, 0)=8087.01 
cm+. Substituting these values for those of Herzberg 
and Howe increases all DO( I) values in Table II and 
Pig. 4 by 0.04 cm-‘, and decreases all Do( 2) values by 
0.10 cm-*, completely removing the apparent anomaly. 

The Dissociation Energy and the 
Vibrational Spectrum 

In the following work the Herzberg and Sowe3 vi- 
brational ladder is used with the addition of the cor- 
rected experimental values of Ta(1, 0) and To(2, 0) 
given above. The eigenvalues reported below were com- 
puted (using the nuclear reduced mass) from the rela- 
tivistic adiabatic potential described in Sec. III.C, with 

.. 

The Herzberg-Howe resultsa are a composite of three sets 
of nonoverlapping experimental data: their own Lyman-band 
measurements which place the levels 0=3 to 14 relatively, B. P. 
StoicheE’s [Can. J. Phys. 35, 730 (1957)l Raman data for the 
rr=0-l transition, and G. Herzberg’s [Can. J. Res. A28, 
(1950)l pioneering quadru le absorption measurements of the 
w=0-2 and 0-3 transitions reinterpreted by Stoicheff). 

80 C. H. Church, Ph.D. thesis, Universit of Michigan, A m  
Arbor, Mich., Re t. UMRI-2609-3-T, 1959 knpublished). 

81 U. Fink, T. g. Wiggins, and D, H. Rank, J. Mol. Spectry. 
18,384 (1965). 

@ J. V. Foltz, D. M. Rank, a d  T. A. Wiggh,, J; Mol. Spcctey. 
21 203 (1966) 
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FIG. 5. &(o) curves from best HW- 
(1968) potential. Curve A corres nds to 
Column 3 in Table HI; B and &clude 
the nonadiabatic corrections from Col- 
umns 5 and 6, respectively; the shaded 
area is a measure of the uncertainty in 
the nonadiabatic correction. A’, B$ and 
C’, and A”, B”, and C”, respectively 
illustrate the effect on curves 9 B iqd 
C of adding corrections A‘ an A’@ 
Fig. 6 to the etlective potential. 

’s 1965 damped-nuclei results in 
3.2 a.u. have been replaced by 

In Appendix A it is shown that eigenvalues com- 
puted for the highest vibrational levels are most sensi- 
tive to the accuracy of the potential just inside their 
respective outer turning points. This is confirmed by 
the convergence of the several curves in Fig, 4 at 
v= 14.71 (f0.02) .a8 This occurs because the re1ativis:ic 
and adiabatic corrections monotonically approach their 
asymptotes over the range of the &(o) for the highest 
levels, thus causing the difference between the several 
effective potentials to approach zero in this region. It 
occurs despite the fact that these effective potentials 
differ significantly (by between $20 and -17 cm-L 
relative to the asymptote) over the region between the 
turning points. 
’ By definition, Do(v) is equal to the true dissociation 
energy if the computed binding energy for level v is 
correct. For the highest levels this is equivalent to 
requiring that the potential be accurate in the neighbor- 
hood of R~(Y) .  Since the computed potential is exact 
at R= Q), Do(14.71) must equal the true dissociation 
energy, though the question may be raised whether 
the “true” value of Do( 14.71) may be derived from a 
simple extrapolation on a graph such as Fig. 4. This is 
the case if the clamped-nuclei potential exhibits its 
true asymptotic behavior in the interval spanned by 
the R2(v)’s for the highest levels, or more precisely, 
if the errar in the clamped-nuclei potential monotoni- 
cally approaches zero in this interval, With this as- 

Unfortunately the new values are reported only at 17 of the 
29 original points on this interval. In  order to minimize the inter- 
polation error, the diEference between the old and new results was 
assumed to vary continuously (except for the expected discon- 
tinuities% at 1.6 and 2.0 ax.) and improved values were obtained 
at all 29 original Tints. Omitting the thus improved points 
affected the eigenva ues by as much as 0.05 cm-b. 

J4 An error in the 1965 KW point at R= 1.6 a.u. has been pointed 
out by C. L. Beckel and J. P. Sattler 0. Mol. Spectry. 20,153 
(1966)], while the discontinuity at R=2.0 a.u. is e ected since 
this is the point at which the 1965 KW results switged from an 
SO-term to a 54-term electronic wavefunction. The discontinuities 
at these r i n t s  are also evidenced by the relatively Iar e ampli- 
tude, in t eir neighborhoods, of the interpolation error functions 
in Fig. 2. 
a This uncertaint in the point of intersection is the average 

ation of &e resuilte ofmveral difllerent numerical extrapolation 
me8. 

the interval 1.05 
heir more recent2 double-precision results.8a 

.- 

sumption, the present result$ yield DO( 14.71) =Be= 
36114.1 ( d ~ 0 . 2 ) ~ ~  cmn-1. This p l u e  agrees within the 
mutual uncertainties with &e experimental value: 
D0=36113.6(&0.3) cm-’. 

We have recomputed eigenvalues from the relativ- 
istic adiabatic potential (including the improved 1968 
clamped-nuclei results) and 
correction, evaluating the lat both Van vie& 
and Frank’sz6 Unsijld ener 
justed” values v, (Sec. I1 
Table 111, yield the thre 
in Fig. 5. Since the nonadiabatic correction is the same 
for the several cases in Table I1 as it is here, Fig. 5 
shows that its addition does not affect the values of 
the intersection point. The distance between Curves 
B and C is a measure of the uncertainty in the non- 
adiabatic correction, though i does not represent a 
bound. The radiative correctio to the energies is not 
discussed here since Wolniewi i ti has derived a bound 
on its magnitude which is smaller than the uncertainty 
n the nonadiabatic correction. 

, 

I 1 

t I 1 I I I 

FIG. 6. Empirical “correction functions” for the KW potential. 
Addition of either of these functions, A‘ or A“, to V(R) induced a 
Battenin of the initially computed nonadiabatic Do(o) curves 
(B and 8) in Fig. 5, corresponding to better agreement between 
computed and observed vibrational spacin s. The shaded re ‘ons 
are an estimate of the nonuniqueness o f  the inversion off the 
primed and double-primed results in Fig. 5 which yielded At and 
Ah”, respectively. The D designations on the abscissse denote the 
outer turning points &(D) 

2 5 8 
R (QUI 
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Since neither the adiabatic nor the nonadiabatic re- 
sults reproduce the observed vibrational term differ- 
ences within reasonable linlits, we have derived two 
possible "correction  function^'^ for the potential, curves 
.&' and A'' in Fig. 6. The addition of these functions 
to the effective potential causes the eigenvdilue cdcula- 
tion to yield the &(v) curves A', R', ntld C' (corrc- 
sponding to A'), and A", B", and C" (corresponding 
to A") in Fig. 5. A' and A" are uniquely determined 
by their respective OO(V) curves to within the indicated 
uncertainties. The nonuniqueness of A' itt small R 
arises since a given change in one of the lowest vibra- 
tional eigenvalues could be induced by changes in the 
potential at  either or both turning points (see Ap- 
pendix A). The uncertainty in the tail of A'' [for 
R>R2( 14)%5.2 a.u.1 arises since the eigenvalues are 
only slightly affected by small changes in the potential 
beyond the outer turning point; however, it seems 
likely that it should quickly approach zero for R> 8 a.u. 
where the KW potential agrees with perturbation the- 
ory results (see Table I). 

V. DISCUSSIOPT 
Although the addition of the nonadiabatic correction 

yields better agreement with experiment (compare B 
and C in Fig. 5, with A), the computed vibrational 
ladder is still elongated relative to the experimental 
one by an accumulated total of 4 cm-l (two orders of 
magnitude greater than the uncertainty in the experi- 
mental data) e This implies that the theoretical potential 
for R<R2(14) is stretched relative to the exact curve 
by about 4 crn-l, approximately the disagreement be- 
tween the experimental and computed dissociation en- 
ergies; of course the two disagreements may not be 
related. 

If the two effects mentioned above are related, any 
questioning of the accuracy of the experimental dis- 
sociation energy is equally a questioning of the experi- 
mental term differences involving an accuniulated total 
of 4-cm-l error. Alternately, if the experimental dis- 
sociation energy is assumed to be correct [agreeing 
with DO( 143l)], the clamped-nuclei potential must 
be too deep by -4 cm-'. In this case the relative Aat- 
ness of Curves B and C in Fig. .5 over the range v= 0-8 
merely indicates that the bowl of the KWJ*J4 potential 
has essentially the correct shape. The correction to the 
potential suggested by this interpretation is curve A' 
in Fig. 6, and its "beneficial" effect on the eigenvalues 
is shown by Curves A', B', and C' in Fig. 5. These 
nonadiabatic results (Curves B' and C') yield reason- 
able agreement with both the observed vibrational 
spectrum and dissociation energy. However, this inter- 
pretation requires a reasonable accuracy (-&OS cm-') 
for the KW potential at  large R ( R S 6  a.u.) , and ICW 
p i n t  out2 that this part of the adialxttic potential is 
expected to be less accurate than that in the vicinity 
of ecluilibriuna. On the other hand, the aood agreement 
with* perturbation-tbeory resdts' (see- Table I) for 

' 

L r  
R>8 B.U. implies that the ICW potential is indeed 
quite accura& (e.g., f0.5 ciii-') in this region,% which 
makes it seem unlikely that it be 4 em-' too shallow 
at R= 6 asi. 

Another interpretation, believed by the present au- 
thors to be less likcly, would treat the disagreements 
of the disaochtion encrgy and of !he vibrational levels 
as unrelated. The former would bc due to some as yet 

interpretation,' the latter to error in the clamped-nuclei 
potential at  large R. This error (curve A" in Fig. 6 )  
would not exhibit its asymptoec behavior (i.e., would 
not monotonically approach two) over the range of 
R2(v)'s for the highest level& thus inva1itl:~ting the 
extrapolation method suggestld in Sec. IV.Ij. 

In a recent paper which also discusses the present 
problem,2 KW arrived at a "final" theoretical value 
for Do(0)=Eb(O), of 36117.4 crn-I. We see here that 
the inclusion of the nonadiaba$c correction which is 
necessary for r.educing the d i s e m e n t  with the ex- 
perimental vibrational term $ff erences increases this 
to 36 118.0 cm-' [our nonadi'gbatic Do(0) evaluated 
from Table 111, plus the radiltive correction"] which 
increases the disagreement with the experimental value 
to 4.4 cm-l. The variational contribution to this the- 
oretical dissociation energy is 36 117.54 cm-'. This is a 
rigorous upper bound.?* to the exact ground-state energy 
of a fictitious system described by the KW adiabatic 
I-faniiltonian plus the Breit-Vli approximation to 
the relativistic correction. Hoqever, since this simpli- 
fied total Hamiltonian cannot tqe expected to accurately 
describe H2, the above quantity aeed not be an upper 
bound to the experimental dssociation energy. Thus 
the correction function A' in Fig. 6 does not violate 
the variational principle if, for example, it is inter- 
preted as an improvement in the relativistic correction. 
In this case, the total relativistic correction to the 
ground-state energy would be 6 cm-l. 

It should be emphasized that the present paper does 
not resolve the question of the discrepancy between 
the experimental dissociation energy of HZ and &(O)  = 

be decided which of the vahes 4(0) =36 118.0 cm-l 
or 00(14,'71)=36 114.1 cm-1 best represents the "the- 
oretical" dissociation energy. While the former is the 
quantity customarily considered, the latter has the 
advantage of being determined mainly by the potential 
at  large R where the relativistic and adiabatic correc- 
tions, whatever their accuracy elsewhere, are approach- 
ing their asymptotic values. 

undiscovered error in the experinien tal work or its i 

t 

t 

I , 

- 

Do(0). On the basis of the evidence a t  hand it cannot i 

a8 This is further suggested by the results in Footnote 22 which 
show that the use of an improved clcctronic-wavcfunction basis 
set only affected the clamped-nuclei potential at 8.0 R.U. by '0.15 
cm-1. 

87 J. D. Garcia, Phys. Rev. 147,66 (1966). 
$8 rhis assumes that replacing the 54-term electronic wave- 

function with which the nt1ini)ntic nnrl IIrcit.-Piuili relativhtic 
corrcctions were by the 10-term wavefunction uwd 
in the most recent clamped-nuclei calculations,* would aot sig- 
nificantly change the corrections. 
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Although an accurate relativistic treatment of this 
problem is beyond the scope of present methods, the 
results presented here suggest two feasible calculations 
which would shed some light on the question of the H2 
dissociation energy. The first is a more accurate re- 
calculation of the damped-nuclei potential in the hter- 
Val (32 R? 7' a&), wliere A" (see Fig. 6 )  is nonzero; 
the second, a more accurate treatment of the non- 
adiabatic correction, such as that suggested by modern 
variational techniques. 

The authors gratefully acknowledge a number of 
irfluminating discussions with Professor S. T. Epstein. 

A: LOCALI~ATI~E OF TBE 
d'POTEIYTTUL DEPENDENCE" OF A 

~ ~ ~ T T I O ~ A ~  EIGEXVALUE 

The high sensitivity of an eigenvalue 3, to the po- 
tential near its turning points may be qualitatively 
explained by considering the effect on the semiclassical 
JWKB phase integral 

I 

of a small shift in the potential (AV)  over a narrow 
interval (AB') about agivenvalueof E,,'=[E,- V ( R ) ] .  ! 

I T o  a first approximation, the change is , 

I r 
I 
I 

I 

I for E:/ I LV I > 1; it reaches a maximum of 

(p/fiz) I AV ['E(A&' [ dV/dR 1") 
(for AVKO) at the classical turning point, where 
A E ~ / ( - A V ) + O .  An analogous result for E,'+ can 
be evaluated for the somewhat more complicated case 
AV>O. Since I,= (v+&r, AV must induce a change 
in a, which varies as 
proaches a finite limit at the turning points where 

this sensitivity almost exclusively to the outer turning 
p i n t  & ( v ) .  

The potential dependence of the eigenvalues as de- 
scribed above is moddated somewhat by the oscillat- 
ing nature of the exact radial wavefunction. This effect 
may be seen by considering the perturbation theory 
ertpression for the eigenvalue change due to the given 
potential shift, I U, 12AV(AB,,' I dV/dR 1"). The term 
involving the wavefunction I U, iz shifts the potential 
dependence inward from the turning point to the region 
where it has its outermost maximum. 

I I dV/dR I I+, but ap- 

E:= 0. For the higher levels, the I dV/dR ] factor shifts 

I 

I \ 

These considerations were illustrated by direct com- 
putations, by observing the effect on the H 2  vibrational 
eigenvalues of localized shiftslin the relativistic, adi- 
abatic RW potentia1."J4 Thej results, given in Table 
IV, indicate that error in an &envalue indeed reflects 
error in the potential in the neighborhood of its turning. 
points, especially the outer one; this is of course,con- 

error in the potential is everywhere relatively small. 
If this condition is not. satisfied, the effect on the 
eigenvalues of inaccuracy in P(R) midway between 
the turning points will no longer be distinguishable 
from that of error in their immediate proximity. 

0 

tingent on the assumption that the maximum absolute i 

tatively compared to that of Harrison and Bernstein" 
(HB) and found to be factor of 4. One 
large difference betwe 
tive methods of est 
trial eigenvalue while i converging on the 
exact result. In the HB he increment of im- 
provemen t decrease 
steps, while with the predictor-corrector formula of 
C-C the necessary improvement decreases by about 
two orders of magnitude with each iteration. The other 
major difference between these methods is that the 
Runge-Kutta integration of H B  requires three to four 
times as much computation as the Numerov method 
of C-C to spZn a given interval for the same increment. 

Both of the above methods proceed by direct nu- 
merical integration of the radial Schrodinger equation. 
Zetik and Matsen: on the other hand, expand the 

TABLE N.%ffect on Hn vibrational eigenvalues of changing the 
potential over a given intervsl.8 

I ,  Ilb A B C 

0 36 118. 0.0 0.0 0.0 
2 28 029. 0.0 0.0 0.0 

' 4  20 864. 0.0 0.0 0.2 
6 14 607. 0.0 0.0 0.3 

8 9 280. -0.6 0.2 0.4 
9 6 987. -1.0 0.7 0.4 
10 4 960. -0.1 1.7 0.3 
11 3 223. -0.4 2.2 0.3 
12 1 808. -0.1 2.6 0.1 
13 759. -0. I 3.1 0.1 
14 139. -0.1 ' 3.6 0.0 

(cm-1) are the binding energies for the unperturbed potential. 
A (cm-1) is the amount by which the vibrationat levels are lowwed. Case 
A (localized perturbation): AV=S.S cm-1 at R-3.25 a.u.gZlt(8). 0.01 
cm-1 > A V 4  for R<fL(l)Gi3.07 8.u.. end R>&(P)Gi:3.48 a.u,; 
Car B:  AV- -4 cm-1 for R>&(8). AV=U tap R<&(8); c 
AV = -4 cm-* for OCRsO.9 a.u. 

7 11 824. -0.1 0.0 0.3 
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radial wavefunctions in a truncated harmonic-oscillator 
basis set and determine the coefficients variationally. 
Their results with basis sets of up to 100 terms were 
somewhat less accurate than the numerical (C-C) re- 

. s u b  C2'*(vp 0) h error by up to -6 m-'], as well as 

( X  lZ#+) H Y D R O G E N  

being significantly slower. Grccnawalt and Dickinson' 
have extendcd their method using Morse-potential 
eigenfunctions as B basis set and achieved considerably 
greater success in terms of eigenvalue accuracy, with 
computation times comparabIe to the C-C metbod, 

L 

4 

I 
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THE UTILIZATION OF POTENTIAL CURVES 



6. 86 - 

6 .  SPECTROSCOPIC REASSIGNMENT AM) GROUND-STATE DISSOCIATION ENERGY OF 1% 

Q u a n t i t a t i v e  and q u a l i t a t i v e  u t i l i z a t i o n s  of 

po in t  o u t  t h e  need f o r  t h e  reassignment d iscussed  

pointed o u t  t h a t  t h e  0' state t o  which t h e  levels 

s igned may i n  f a c t  be  3C"(O+) r a t h e r  than 311+ ; 
g 

g og 

t h e  method of Chapter 3 

here .  Mulliken r e c e n t l y  

i n  ques t ion  are reas- 

however, h e  notes' t h a t  

1 

t h e r e  are no good grounds f o r  dec id ing  between t h e s e  two p o s s i b i l i t i e s .  

Fo r tuna te ly ,  t h i s  i d e n t i f i c a t i o n  ques t ion  does n o t  a f f e c t  t h e  arguments 

presented  below. 

Phys ics ,  Volume 52, pp. 2678-82 (American I n s t i t u t e  of Phys ics ,  New York, 

1970). 

This  work is r e p r i n t e d  from t h e  J o u r n a l  of Chemical 

FOOTNOTE 

1. R. S. Mulliken, "Iodine Revis i ted" ,  (1971, t o  be  publ ished)  e The 

author  is very  g r a t e f u l  t o  P ro fes so r  Mulliken f o r  making t h i s  manu- 

s c r i p t  ay&labl,e i n  advance of pub l i ca t ion .  
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ROBERT J. LEROY 
Theoretical Clwtizistry Institute and Department of Clcesrislry, University of Wisconsin, Madison, Wisconsin 53706 

(Received 3 September 1969) 

Reanalyzing some early bandhead data for I2[B Ou+(3rI)], an improved value of the ground-state dis- 
sociation energy is found to be Do= 12 440.9f1.1 cm-1, differing significantly from the previously accepted 
value of Verma, 12 452.5f1.5 cm-1. This result implies that the final state of one of the uv resonance 
series reported by Verma must have a rotationless potential maximum some 13.lf1.4 cm-1 high. It is 
further shown that the original electronic assignment of this state as ground-state X O,+(*Z) is implausible. 
A reassignment as O,+(%) is proposed, and the nature of the O,,+(%) potential is considered. 

I. INTRODUCTION for the ground state. Furthermore, their sharp con- 
vergence-limit cutoff lies above a value of the ground- 
state dissociation energy obtained from other data, 

has a potential maximum. This suggests that the 
present best value of the dissociation energy,' which 
is based on the position of this cutoff, is too large 
by an amount equal to the height of the barrier, 

state dissociation energy and proposes that the levels 
in question be reassigned to the oo+;c(aII) state. 

/_L 

Verma observed' six series of uv resonance emission 

1830.4-A iodine atomic line by molecules in five rota- 
tional levels of the v"= 0 level2 of the ground electronic 
state of 12.  This absorption corresponded to transi- 
tions into five resonant vibrational-rotational levels 

emission from these levels yielded the observed series. 
Verma concluded' that this emission always produced 
molecules in the ground electronic state. This is un- 

doublets which Were excited by absorption Of the which implies that the state to which they belong 

Of an excited 'a+ state? and the subsequent The present paper presents a new value of the ground-, 
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, aPln .spin-orbit splitting of iodine atonis from the 
rslimatc for Do is obtained by subtracting the 2Z'3r~- 

I 
2 1  

converSence limit-of tlii B o~+(~II) - .x  0;' (IS) banti 
spectrum.*.' 

Rrow\.n" has reported bandhcntl nieasurrmcn~s for 
levels o'=fS-72 of the I3 O,,+(%) state. Careful cstrap- 
olation from these data places the B-state dissociation 
limit 20 044.01 I. I cm-I above the o"= 0, ,j"= 0 leveI 
of the ground state.'" Subtracting from this the 7603.15- 
cm-1 2P112--2Pa12 spin-orbit splitting energy9 yields 
Do= 12 440.9fl . l  C I ~ - ~ . * ~  This result corresponds to the 
B= 1 state having 89f 1 vibrational levels? 

A second approach to Do, that used by Verma,l is 
based on the sharp low-energy cutoff of the uv reso- 
nance series at the convergence limit. The electronic 
assignment of the lower state of this series is im- 
material since it could only dissociate to yield two 
ground-state 2P3,2 atoms. Furthermore, the original 
rotational assignment of this resonance series (J,= 25)  
is based on the rotational constants for the emitting 
levels and hence is valid independent of the electronic 

essentially the same manner as Verma' yields a Do 
estimate of 12 452.4f1.8 cm-i.ll 

In general, the final electronic states of the two 
transitions considered above may have repulsive po- 
tential barriers as well as attractive wells. Therefore, 
the two estimates of DO are both upper bounds, being 
equal to the true Do plus the height of the appro- 
priate barrier. Since the first value obtained is 11.5f3 
cm-I smaller than the second, the state giving rise 
to the latter must have a rotationless (J=O)  potential 
barrier a t  least 11.5&3 cm-1 high. 

The moderately long-range interaction of two 2P 
(2P-a12 or 2 P ~ l ~ )  iodine atoms may be expressed as13 

I 
! '  

I 
! ,  
1 
1 I 
I assignment of the final state. Utilizing the data in 
j 

, 

I 

I 

where the first term arises from the first-order per- 
turbation energy, and the next three terms from the 
second ortlcr. I t  may readily bc shown th;it Cn, C;k, 
: ~ t l  Cjo itre ncptive (:ittriictive) for it11 molcculiir 
stittcs forlned from two ground-state (2Pzp) atoms.14 
Furthermore, theoretical values of c6 have been cal- 
culated for all the states formed on combining zP3/2+ 
'P3/2 or 2P3/2+aP~12 atom~. '~J~ These values show which 
states are attractive and which are repulsive at  the 
large distances a t  which the R-6 term dominates the 
interaction. 

The theoretical Ca for the B O,,+(%) state, which 
dissociates to 2P3,2+2P1fi, is negative (attractive) .*3J5 

Furthermore, in Ref. 8 it is shown that the potential 
at the outer turning points of the highest observed 
B-state levels is dominated by this R+ term. There- 
fore, the B Ou+(311) potential cannot have a barrier 
maximum, DO- 12 440.9f1.1 cm-' for the ground elec- 

tronic state, and the state giving rise to the uv con- 
vergence-limit resonance srrics must Iiwe a potential 
barrier w11.5f3 an-' high. 

111. Reassignment of the UPT Resonance Series at the 
Convergence Limit 

A. The Heed for 8 Reassignment 

The data considered for reassignment are tbc lines 
in the convergence limit portion of Verm:i's resonance 
series IVb, presented in hid Table V.' i l e  concluded 
that the lower state of tfis series was the ground 
electronic state. While this:h unquestionably the case 
for the other five uv re5 ance series observed, it is 

for the series in question. 
The theoretical c6 for the ground X O,+(lZ) state 

of Iz is zerof3J5; hence, the moderately long-range 
forces are dominated by attractive second-order 
perturbation terms (c6, and Clo). Since the ex- 
change forces are also at  ive (as is evidenced by 
the deep potential well) s state cannot have a 
potential maximum. Therqore, the final state of the 
uv convergence-limit res@ce series cannot be the 
ground state. 

A more qualitative objection to the original assign- 
ment is based on the Franck-Condon accessibility of 
the final levels. Verma's Fig. l lg ) '  shows that the 
emission into the 18 adjac#nt levels at  the dissocia- 
tion limit has roughly congtant intensity. Therefore, 
it seems strange that no$ of the 13 levels imme- 
diately below his vN = 98 wFld  be suf6ciently accessible 
from the upper state to allow measurable emission. 
.The observed behavior suggests that Verma's vN= 98 
is actually the lowest vibrational level of some excited 
electronic state. 

A Gnal argument against the X O,+(lZ> assignment 
is based on the expected behavior of a Birge-Sponer 
plot for vibrational levels lying near the dissociation 
limit. It has been shown that when the outer branch 
of the potential in this region is a short sun1 of at- 
tritctive invcrsc-powcr terms, the plot should 1i:tvc 
positive (upward) curvature>J* For the ground state 
of IZ this positive curvature is observed above vf'= 73 
and increases from there up to v"=82 (the highest 
well-known level below the convergence-limit reso- 
nance series), where it equals 0.060 cm-l." For this 
state, the theory suggestsa that above the point of 
inflection at  vff  = 73 the curvature [daG(o)/MJ shodd 
increase, perhaps pass through a slight maximum, 
and asymptotically approach a constant value of 
94/(c6)"* cm-1 (where C6 is in cm-5 A*) .n For a 
reasonable c6 of 3.0X 1W6 cm-' As, this asymptotic 
curvature would be 0.054 cm-l. On the other hand, 
the level spacings in the convergence limit resonance 
series show negligible curvature (2 0.001 cm-1; see 

shown below that this assignment 9 is quit.e implausible 
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TABLE I. X~[O~+(aII)] vibrational energies (in cnrl) expressed 
relative to the u"=O, J"=O level of the ground state. 

P' ti V' E Y' E 

a 12 362.4 6 12 413.6 12 12 444.0 
1 12 372.5 7 12 420.1 13 12 447.2 

2 12 381.9 8 12 426.0 14 12 449.7 

3 12 390.5 9 12 431.4 15 12 451.5 

4 12 399.0 10 12 436.1 16 12 452.9 

5 12 406.6 11 12 440.4 17 12 453.7 

Fig. 2).1* This strengthens the argument that these 
levels cannot belong to the ground state. 

Theory showss that vibrational levels lying near 
the dissociation limit, which yield a linear Birge-Sponer 
plot, correspond to a long-range potential which is 
either exponential or is dominated by an effective 
inverse-power term R* with rt being large (n>>lO) .19 
This high effective power is qualitatively the type of 
behavior one would expect on the inner side of a poten- 
tial barrierarising from a sum of attractive and repul- 
sive inverse power terms. 

B. The Reassignment 

The final state to which the levels in question belong 
.must have a potential barrier of height =11.5f3 
cm-' as well as an attractive well, and must correlate 
with two ground-state 2P3/2 atoms. Nine states in ad- 
dition to the ground state correlate with two ground- 
state atoms; of these, three are nondegenerate and six 
are doubly Q degenerate.2O The nature of the emission 
and absorption spectrum of Venna's upper state clearly 
indicates that it is O,,+?l Therefore, the AQ=O, f l  
electronic selection rule immediately removes two pos- 
sible assignments. In addition, the gerade-ungerade 
symmetry selection rules for electric dipolez? transi- 
tions (g-u, gwg, U * ? C ) ~ ~  leave the Og+(3a) and lg(Q) 
states as the only electronically allowed assignments. 

The rotational selection rules for transitions from 
a Ow+ state into singly degenerate Og+ or doubly 

I I I I I I I I I L 100 106 112 1 

FIG. 1. Rotational constants for final state of convergence-limit 
resonance series. The Y" numbering Corres onds to Verma's 

nment' and v' numbering to &e present O#+(aII) 
are Verma's experimental values, and the arrow 

denotes the highest observed level. 
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~ X G .  2. Vibrational spacings of leve]~  in convergence-limi t 
rcso!iance series. Y" represents the 01 2 X ai+(%) vitmtitmal 
numbering' and Y' the proposed Os+(81$i numlJcring. The curve 
is generated from expression (2). 

%degenerate lg  states allow U=fl  and M = O ,  &i 
transitions, respectively. The first g p s  rise to doublet 
and the second to triplet structurq, While transitions 
into the separate branches of tbe B doublet (lg) 
would correspond to &J= f l  and &J= 0, respectively, 
the intensity of the Q branch ( A J = O )  is theoretically 
twice that of the P or R branches, so this spectrum 
would be observed as either the full triplet or as a 
~inglet.2~ Verma was able to resolve the structure of 
the emission into the three lowest levels of the con- 
vergence-limit series, and it is clearly doublet in 
nature. Therefore, the only completely allowed reas- 
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signment of the levels in question is to the 0,,+(311) 
state. 

The theoretical long-range R-6 term for the O,,+(rlT) 
state is rep~lsive,’~J~ while its R-B, K-*, and R-l0 
terms are attractive14; thus it seems plausible that it 
will have an attractive well bounded by a potential 
maximum. On the other hand, the theoretical ct, for 
this state (2.3X 105 cm-I i6)L3J6 is too small to yield 
a 1 1 . 5 ~ 3  cnr1 barrier at large R, either alone or when 
the competing attractive R-O term is taken into ac- 
c0unt.2~ 

Although the origin of the potential barrier is 
somewhat uncertain, the reassignment of the uv con- 
vergence-limit resonance series to the O,+(TI) state 
still seems much more likely than its original assign- 
ment as X O,+(lZ). The validity of this reassignment 
will now be assumed and the concomitaqt properties 
of the O,+(aII) state will be considered. 

This state was previously observed by Venkates- 
warlu22 in diffuse bands arising as‘ emission from 
discrete levels of the previously mentioned highly 
excited O,+ state. Venkateswarlu concluded that its 
potential was repulsive in the neighborhood of the 
minimum of the ground-state potential, and that it lav 
below and to the left of the B Ou+(”II) This 
same conclusion was also inferred from considerations 
involving the quenching of B-state fluorescence.26 

Due to this intermediate-range repulsiveness of the 
O,+(Q) curve, its potential minimum must lie a t  
reasonably large R, and the well is unlikely to be 
very deep. The noncrossing rule which forbids it from 
crossing the ground-state X O,+(lZ) curve also implies 
that the well must be quite shallow. In view of this 
and of the roughly constant intensity of the emission 

. into the observed levels, it seems probable that the 
lowest observed level is d = O .  If this numbering is 
incorrect, it seems unlikely that i t  would be more than 
one or two units too small. 

The energies and assumed vibrational assignments 
of the convergence limit levels are given in Table I. 
The small rotational energy contributions to the ob- 
served lines were removed after extrapolating beyond 
the three experimental Bo# values in the manner 
shown in Fig. 1. Utilizing Fig, 1 to obtain Bnf values, 
rather than the approach of Ref. I, places the con- 
vergence limit of this series at  12454.0f0.3 cm-1 
(1.6 cm-I higher than the previous estimate), This 
yields 13. l f1 .4  cm+ as a better estimate of the height 
of the potential maximum. Six of the 18 observed levels 
are metastable (for J’=O), being bound only by this 
potential barrier. 

efsiti~ tlw rilmvc vit)nttimtl urtnignrticnt, the vibru- 
t i f , l I ld  t+llwgil+t4 Bully bc Prprerrel~tttla will,ln n RlL111ti111’11 
m o r  of f0.08 em-1 by 

&(d) = 12 357.3+%0.522(0~+2j) -0.2866(~’+&)~, (2) 

90 

wherc tlic energy zero is the v”=O, J ” = O  level of 
the ground stntc. This shows that this state has a 
potcntial ,well at  least 8 3 . 6 ~  1.1 cm-l dccp (relative to 
the dissociation limit, not the potential maximum), 
Furthermore, the observed rotational splittings woitld 
place the potexitial minimup at 6.0fO.6 A. The ex- 
perimental vibrational sp ngs tire compared with 
those calculated from ex sion (2) in Fig. 2, The 
curve suggests that there &ay exist one more, as yet 
unobserved, quasibound s&te. 

The potential curve for&,+(TI) is shown schemat- 
ically in Fig. 3, together with curves for a number 
of neighboring states. The ground-state potential up 
to 11 933 cm-I and the B O,$(aIl)-state potential up 
to 19 705 cm-* are RKR po@ntiaIs (taken from Ref. 
12, and Refs. 4 and 6, rekectively). The Oa-(3Z) 
curve was taken from Ref. 2r and the A lzt(TI) curve 
is based on the conclusions of A t  large dis- ‘ 

tances the A l ~ ( ~ I l )  and X Off+(‘2) curves must cross, 
since the latter dies off as R-@ and the former as R-5. 

Furthermore, the A lzc(TI) curve may also cut across 
the O,+(”II) well. The theoretical CS for O,,-(%) is 
a third larger than that for O,+(%) ,l3JS so these curves 
should not cross at  long range. 

‘Ve COHCLgSZOrSS 

It has been shown thag contrary to the original 
assignment, a portion of the uv resonance spectrum 
of ‘I2 does not correspond to emission into the ground 
electronic state. The most probable reassignment for 
the levels in question was found to be 0,+(31j[). This 
state appears to be an example of a van der Waals% 
molecule (bound only by the moderately long-range 
dispersion forces30) which has a potential bacrier. An 
improved estimate of the ground-state dissociation 
energy is DO= 12 440.951.1 ern-'. 

spectrum‘ is the first observation of the discrete levels 
of the 0,+(311> state. These levels clearly cannot be 
observed in absorption from the ground state because 
of the gd-tg symmetry selection rule. However, they 
may be observable in near ir fluorescence (at around 
1.4 p )  from some of the higher levels of the B Ot,+(?JI) 
state. One restriction-to this type of measurement is 
that the fluorescing state cannot have a very hi& 
rotational quantum number, as in this case the cen- 
trifugal potential would bury the shallow 0,+(31-8) well, 
However, if appropriate B O,+(TI) levels can be ex- 
cited, these @,+(%) levels may be observed together 
with neighboring X 0,+(’2) levels, giving direct con- 
firmation of the proposed reassignment. 

If the present reassignment is correct, Verma’s uv ‘ 

S am pleased to rrcitnowlctlge pertinent discussion8 
with BP, A, S, Dickinson; the comments, encourage- 
ment, and support of Professor R. B. Bernstein; and 
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helpful corrrspondence w i h  Profrssor J. I. St einfclcl. 
1 alii also dccply indebted to Professor R. D. Veriiin 
for some very te ihg  criticisn-~s of an early version of 
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SHAPE RESONANCES AND ROTATIONALLY PREDISSOCIATING LEVELS: 

THE ATOMIC COLLISION TIME-DELAY FUNCTIONS AND QUASPBOUND 

l + *  
C ) 
g 

LEVEL PROPERTIES OF H2(X 

by 

Robert J. L e  Royf and Richard B.  Be rns t e in  

Theore t i ca l  Chemistry I n s t i t u t e  and Department of Chemistry 

Univers i ty  of Wisconsin, Madison, Wisconsin 53706 

ABSTRACT 

The energy dependence of t h e  c o l l i s i o n a l  time-delay func t ion  has  

14- C 
g 

been computed f o r  H(1S) atoms i n t e r a c t i n g  via t h e  ab i n i t i o  H2(X 

p o t e n t i a l .  Peaks i n  t h i s  func t ion  determine t h e  s c a t t e r i n g  resonance 

energ ies  E, and wid ths  T, and t h e  l i f e t i m e s  f o r  each of  t h e  corresponding 

quasibound v i b r a t i o n a l - r o t a t i o n a l  levels.  Small d i f f e r e n c e s  are found 

between t h e s e  E and r ,  and t h e  values obta ined  by a “maxhum i n t e r n a l  

amplitude” approach ( in tended  t o  c h a r a c t e r i z e  t h e  spec t roscop ica l ly  

r 

observable  p r e d i s s o c i a t i n g  levels). Approximate procedures f o r  r ap id ,  

accurate numerical eva lua t ion  of E are appra ised ;  a new outer-boundary- r 

condi t ion  c r i t e r i o n  f o r  resonances l eads  t o  t h e  b e s t  agreement wi th  t h e  

*Work supported by Nat iona l  Science Foundation Grant GB-E6665 and Nat iona l  

Aeronautics and Space Adminis t ra t ion Grant NGL 50-002-001. 

+National  Research Council  of Canada Pos tgraduate  Scholarsh ip  ho lde r ,  

1969-71. Present  address :  Department of Phys ics ,  Univers i ty  of Toronto, 

Toronto 181, Ontar io ,  Canada e 
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exac t  r e s u l t s .  Also,  a p r i m i t i v e  WKB procedure y i e l d s  r p s  of usab le  

accuracy.  For  ground-state  H 

due t o  c e n t r i f u g a l  b a r r i e r  p e n e t r a t i o n  i s  found t o  occur a t  ene rg ie s  

some hundreds of cm below t h e  locus  of b a r r i e r  maxima. The predis -  

s o c i a t i o n  method of es t imat ing  long-range in t e ra tomic  f o r c e s  t h e r e f o r e  

cannot b e  expected t o  y i e l d  v a l i d  r e s u l t s  f o r  h y d r i d i c  diatomics .  

HD and D29 t h e  onse t  of l i n e  broadening 29 

-1 
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I, INTRODUCTION 

The in f luence  of long-lived quasibound states, o r  o r b i t i n g  resonances,  

on v i r i a l  and t r a n s p o r t  p r o p e r t i e s  of gases  and on chemical r e a c t i o n  rates 

is  now widely recognized,  '-lo 

considered t o  b e  temporar i ly  bound wi th  some s o r t  of c h a r a c t e r i s t i c  l i f e -  

Wnile any p a i r  of c o l l i d i n g  atoms may b e  

t i m e  11'12 what is  considered h e r e  i s  t h e  pure ly  quan ta l  phenomenon of 

t h e  metas tab le  levels a r i s i n g  from t h e  ex i s t ence  of both a minimum and 

a maximum i n  t h e  e f f e c t i v e  i n t e r a c t i o n  p o t e n t i a l .  These levels q u a l i t a -  

t i v e l y  correspond t o  d i s c r e t e  v i b r a t i o n a l - r o t a t i o n a l  diatomic levels 

which would b e  t r u l y  bound by t h e  b a r r i e r  i f  i t  were impenetrable .  

Although o r b i t i n g  (o r  "shape") resonances are, i n  p r i n c i p l e ,  observable  

i n  molecular  beam s c a t t e r i n g  experiments,  13-17 t h e  beam technology has  

no t  q u i t e  reached t h e  po in t  a t  which t h e  r equ i r ed  r e s o l u t i o n  is  

obta inable .  On t h e  o the r  hand, under t h e  pseudonym of " ro ta tFmal1y-  

p red i s soc ia t ing  levels" 

than  40 y e a r s ,  19y20 

s p e c t r o s c o p i s t s  have been s tudying them f o r  rtore 

The s t r u c t u r e  seen  i n  t h e s e  experiments i s  a mani- 

f e s t a t i o n  of t h e  "pseudo-quantization" of  t h e  continuum wave func t ions  

by t h e  p o t e n t i a l  b a r r i e r .  I n  t h e  p re sen t  paper t h e  p r o p e r t i e s  charac te r -  

i z i n g  t h e  observables  i n  t h e  two types  of experiments are examined and 

small sys temat ic  d i f f e r e n c e s  are noted.  The r e l a t i o n  between t h e  l i m i t i n g  

curve of d i s s o c i a t i o n  (LCD), corresponding t o  t h e  breaking-off of ro ta -  

t i o n a l  series due t o  r o t a t i o n a l  p r e d i s s o c i a t i o n ,  and t h e  locus  of t h e  

c e n t r i f u g a l  b a r r i e r  maxima (LBM) is a l s o  examined. 

-1- 
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A number of d i f f e r e n t  procedures f o r  determining t h e  resonance 

energ ies  and wid ths  f o r  a g iven  p o t e n t i a l  are examined; r a p i d  and 

a c c u r a t e  approximate a lgor i thms are presented .  A l l  r e s u l t s  are i l l u s t r a -  

1 +  t e d  w i t h  c a l c u l a t i o n s  f o r  t h e  ground (X C ) state  of H and i t s  i so topes ,  g 2 
using t h e  ab i n i t i o  r e l a t i v i s t i c - a d i a b a t i c  po ten t ia l .  of Koaos and 

Wolniewicz e21y 22 The in f luence  of small p o t e n t i a l  co r rec t ions  is  a l s o  

considered.  

-2 - 
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11. RESONANCE ENERGIES AND WIDTHS V I A  SCATTERING THEORY: THE TIME-DELAY 

FUNCTION 

A .  General 

The man i fe s t a t ion  of a resonance i n  t h e  energy dependence 

of an atomic s c a t t e r i n g  c ros s  s e c t i o n  arises from a r a p i d  growth (essen- 

t i a l l y  by T )  of t h e  phase s h i f t  6 (E) f o r  a p a r t i a l  wave wi th  angular  

momentum quantum number J ,  wi th  inc reas ing  c o l l i s i o n  energy E.  

However, i t  is w e l l  knoml3  t h a t  t h i s  s t ruc ture  can e x h i b i t  a v a r i e t y  of 

shapes,  depending on t h e  so-cal led background phase s h i f t .  Thus, i t  

may be d i f f i c u l t  t o  c h a r a c t e r i z e  t h i s  observable  c ross -sec t ion  s t r u c t u r e  

by a p r e c i s e  resonance energy E and width r .  On t h e  o ther  hand, a 

resonance can always b e  cha rac t e r i zed  by t h e  f u n c t i o n a l i t y  of t h e  appro- 

p r ia te  par t ia l -wave phase s h i f t s .  Within t h e  Breit-Wigner parameter iza-  

t i ~ n , ~ ~  i n  t h e  neighborhood of an i s o l a t e d  resonance: 

J 
7-9,13,23,24 

r 

6J(E) = f3 (E) + a r c t a n  J 3 

where BJ(E) is  t h e  background phase s h i f t .  

width l' is  t h e  f u l l  wid th  a t  h a l f  maximum (PWHM) of t h e  resonance peak 

i n  t h e  c ros s  s e c t i o n .  

e f f e c t i v e  p o t e n t i a l ,  t h e  energy dependence of t h e  background phase i s  

n e g l i g i b l e ,  7-9 and t h e  phase s h i f t  d e r i v a t i v e  

I f  eJ(E) = 0,  t h e  resonance 

For ene rg ie s  w e l l  below t h e  maximum i n  t h e  

-3- 
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d i s t i n c t  nega t ive  curvatureifcg which w i l l  tend t o  

db (E)/dE t o  ene rg ie s  somewhat lower than  Ere On 

d i v i s i o n  of t h e  t o t a l  phase s h i f t  i n t o  a resonant  

con t r ibu t ion  ( i . e . ,  f i t t i n g  t o  Eq. (l)), does no t  

J 

a t t a i n s  i ts  maximum (namely 2/r) at  E = Ere 

resonances ly ing  nea r  (above o r  below) t h e  b a r r i e r  maximum, BJ(E) has  

However, f o r  t h e  broad 

s h i f t  t h e  maxima of 

t h e  o the r  hand, t h e  

and a -background 

appear t o  be  p a r t i -  

8 1) 16,30 c u l a r l y  f r u i t f u l . 2 6  I n  t h e  p re sen t  work, t h e  more convent ional  

s ca t t e r ing - theo ry  d e f i n i t i o n s  w i l l  be  used, t h a t  is, tak ing  t h e  

resonance p o s i t i o n s  as t h e  po in t s  of i n f l e c t i o n  of 6 (E) ( i . e a 3  t h e  

m a x i m a  of dGJ(E)/dE ), and t h e  widths  as 

J 

B. The C o l l i s i o n a l  Time-Delay Funct ion 

11 I n  19 60 Srnithl2 e labora ted  on t h e  o r i g i n a l  Eisenbud-Wigner 

concept by de f in ing  t h e  c o l l i s i o n a l  qime-delay func t ion  

‘rd(E,J) [ i n  Smith’s 194’12 n o t a t i o n  QRR(E) o r  Q(E,L)] in .  terms of an  

i n t e g r a l  of t h e  time-independent wave func t ion .  

t o  t h e  phase s h i f t  d e r i v a t i v e s  by proving t h e  i d e n t i t y  

H e  then  r e l a t e d  it 

T ~ ( E , J )  = 2 45 dSJ(E) 
( 4 )  

dE 

Scateer ing-theory resonance ene rg ie s  f o r  t h e  J- th  p a r t i a l  .wave 

t h e r e f o r e  correspond t o  t h e  energ ies  a t  which maxima occur i n  T ( E , J ) ,  

wh i l e  t h e  wid ths  [from Eq. (3 ) I  are 
d 

-4- 
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= 4 [Td(E9J)lmax ( 5 )  

It should be  noted t h a t  Eqs. (4-5) are i d e n t i t i e s ;  a l s o  [Td(E9J) Imax 

is  not t h e  p r e d i s s o c i a t i o n  l i f e t i m e  T of t h e  quasibound s ta te .  The 

la t te r  may b e  shown3' t o  be  

T =  1 4 
- 

The method used h e r e  f o r  computing T (E,J) from Smith'sx2 formal  d 

express ion  i s  descr ibed  i n  Appendix A .  

The n a t u r e  of t h e  time-delay func t ion  is  i l l u s t r a t e d  i n  F igs .  1 

and 2 f o r  several p a r t i a l  waves f o r  H 4- H and D 4- D c o l l i s i o n s  governed 

by t h e  (X C ) ground-state molecular p o t e n t i a l .  Contrary t o  t h e  

sugges t ion  of Fig.  5 i n  Ref. ( 4 ) ,  s d ( E , J )  shows no s t r u c t u r e  a t  ene rg ie s  

s i g n i f i c a n t l y  above t h e  p o t e n t i a l  maximum ( t h i s  w a s  found t o  b e  the case 

1 +  
g 

f o r  H + H, H + D and D + D, f o r  all J). A s  is  i n f e r r e d  from t h e  

phase s h i f t  curves i n  Refs. ( 7 - 9 ) ,  at s u f f i c i e n t l y  h igh  ene rg ie s  

'rd(E, J) eventua l ly  becomes nega t ive  as the in f luence  of  t h e  r e p u l s i v e  

core  of t h e  p o t e n t i a l  becomes dominant; it t h e n  passes  th-raugh a very  

broad minimum and asymptot ica l ly  approaches z e r o  from below. 

behavior  is seen i n  F ig  . 3  

waves of H 4 B. There i s  apparent ly  no l o c a l i z e d  s t r u c t u r e  i n  -rd(E,J) 

a s soc ia t ed  w i t h  t h e  b a r r i e r  maximum; t h e  only n o t i c e a b l e  e f f e c t  is  t h e  

change i n  t h e  s i g n  of t h e  s l o p e  of  t h e  non-resonant background t i m e -  

de lay  ( s e e  F igs  1 and 2) @ However, f o r  low J t h i s  occurs  a t  energ ies  

This 

( s o l i d  curves)  f o r  several low p a r t i a l  

-5- 
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below t h e  b a r r i e r  maximum 

case it  i s  usua l ly  obscured by t h e  s t r u c t u r e  due t o  t h e  h i g h e s t  resonance,  

( s ee  t h e  J = 4 curve i n  F ig .  3 ) ,  and i n  any 

It is d e s i r a b l e  t o  examine t h e  appropr ia teness  of t h e  Breit-Wigner 

paramet r iza t ion ,  i m p l i c i t  t o  Eqs. (1)-(3) and (5), f o r  broad resonances 

near  t h e  b a r r i e r  m a x i m u m  where t h e  curva ture  of t h e  background phase 

is not  negl ig ib le .32  

h a l f  maximum (FWHM) of a resonance peak i n  ' rd(E,J) is  equal  t o  t h e  

T def ined  by Eq. (5). This  ques t ion  is  examined i n  Table I f o r  broad 

H + H resonances l y i n g  c l o s e  t o  t h e  b a r r i e r  maxima f o r  t h e  i n d i c a t e d  

J 's; t h e  penul t imate  column t a b u l a t e s  t h e  FWHM of t h e  rd (E , J )  peaks, 

whi le  t h e  preceding one l ists  t h e  widths  g iven  by Eq. (5) .  'ke 

agreement is  good, e s p e c i a l l y  f o r  t h e  narrower resonances,  which ind i -  

It implies  t h a t  t h e  f u l l  width at  

cates t h a t  t h e  s imple paramet r iza t ion  of Eq. ( l ) ,  w i th  f3 (E) E 0 ,  

is a t  least adequate  f o r  resonances narrower than  ca. 100 c m - l n  
J 

- 

111. SPECTROSCOPIC RESONANCE POSITIONS AND WIDTHS: THE INTERNAL- 

AMPLITUDE FUNCTION I .. 

A. Q u a l i t a t i v e  Discussion 

A quasibound level may be  observed spec t rQscop ica l ly  as a peak 

i n  t h e  continuum absorp t ion  or  emission f o r  t r a n s i t i o n s  between it  

and a d i s c r e t e  bound state. The t r a n s i t i o n  p r o b a b i l i t y  varies as 

I o  I 

-6 - 
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Here v 

r a d i a l  wave func t ion  of t h e  d i s c r e t e  state,  Me(R) t h e  e l e c t r o n i c  

t r a n s i t i o n  moment func t ion ,  and Y (R) t h e  continuum quasibound-level 

wave func t ion  wi th  t o t a l  o r b i t a l  angular  momentum quantum number J ,  

at an energy E above t h e  diatomic d i s s o c i a t i o n  l i m i t .  The func t ion  

is t h e  frequency of t h e  emit tedlabsorbed l i g h t ,  Yd(R) t h e  

E,J 

( V , E )  f a c t o r s  i n t o  t h e  dens i ty  of continuum levels a t  energy E ,  

t i m e s  u n i t y  f o r  abso rp t ion  o r  v3 f o r  emission.  

u sua l  s i t u a t i o n )  t h i s  frequency f a c t o r  does no t  a f f e c t  t h e  i n t e n s i t y  

For hU >> I? ( t h e  

d i s t r i b u t i o n  near  a resonance, and hence can b e  ignored. Also,  t h e  

asymptot ic  wave func t ion  normal iza t ion  w i l l  b e  chosen such t h a t  t h e  

dens i ty  of states is cons tan t ,33  completely removing t h e  p (V,E) term 

from t h e  problem. This  normal iza t ion  is  

-+ 
'E,J (R) A k {sin(kR f 6J (E)  - J'rr/2q ( 7 )  

where A is a cons tan t  and k = fx . 
r t r u c t u r e  arises because t h e  amplitude of Y 

Observable spec t roscop ic  

(R) behind ( a t  smaller 
E,J 

R than) t h e  p o t e n t i a l  b a r r i e r ,  peaks sha rp ly  i n  t h e  neighborhood of 

a resonance. 

i n t e r n a l  ampli tude,  t h e  r a d i a l  p o s i t i o n s  of t h e  wave func t ion  nodes 

ly ing  behind t h e  b a r r i e r  change only very s l i g h t l y  ac ross  t h e  width 

of t h e  resonance.34 This  sugges ts  t h a t  t h e  continuum wave f u n c t i o n  

A t  t h e  same t i m e ,  d e s p i t e  t h e  d r a s t i c  change i n  t h e  

beh ind" the  b a r r i e r  and nea r  a resonance may b e  f ac to red  i n t o  a n e a r l y  

energy-independent r a d i a l  func t ion ,  and an energy-dependent amplitude: 

-7- 
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Resonance s t r u c t u r e  i n  t h e  absorpt ion/emission i n t e n s i t y  thus  depends 

only on IA(E,J) ; t h i s  " i n t e r n a l  amplitude" fqnc t ion  is  examined below 

and i ts  behavior  compared t o  t h a t  of T (E,J) e d 

B .  Semic la s s i ca l  Treatment of Orbi t ing  Resonances 

Before proceeding wi th  t h e  f u l l y  quan ta l  computational i nves t iga -  

t i o n ,  i t  is  i n s t r u c t i v e  t o  examine t h e  imp l i ca t ions  of a semiclassical 

a n a l y s i s .  The b e s t  semiclassical treatments of o r b i t i n g  resonances 

s tar t  by approximating t h e  p o t e n t i a l  b a r r i e r  by a s imple model func t ion  

(e.g. ,  an i n v e r t e d  parabola)  f o r  which t h e  exact wave func t ions  are 

known. 35-37 

p o t e n t i a l  w e l l  behind t h e  b a r r i e r :  

They nex t  d e f i n e  t h e  semiclassical wave func t ion  over t h e  

where 

and R (E) is t h e  innermost classical tu rn ing  p o i n t  a t  t h e  energy E ,  

Then t h e  exac t  s o l u t i o n s  for t h e  model b a r r i e r  are used t o  connect 

1 

Eq. (9) t o  t h e  s o l u t i o n  ou t s ide  t h e  b a r r i e r  a t  asymptot ica l ly  l a r g e R :  

-8- 
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where f (E)  and g(E) are complicated func t ions  of t h e  energy and t h e  

p r o p e r t i e s  of t h e  model b a r r i e r .  Cast ing Eq. (10) i n t o  t h e  semiclassical 

form equ iva len t  t o  Eq. (7)  y i e l d s  

IA(E , J )  e [ f2(E)  * g2(E>1-' 3 

and 

6J(E) = arctan [g(E) / f (E)]  

S u b s t i t u t i n g  Eq. (12) i n t o  Eq. (4) y i e l d s  

where primes denote  d i f f e r e n t i a t i o n  wi th  r e s p e c t  t o  E. Comparison of 

Eqs. (11) and (13) sugges ts  t h e  o r i g i n  of t h e  coincidence previous ly  

no t i ced  between t h e  sca t t e r ing - theo ry  resonance pos i t i ons  and t h e  

s t r u c t u r e  i n  t h e  i n t e r n a l  amplitude func t ion  (and thus  i n  t h e  o p t i c a l  

t r a n s i t i o n  p r o b a b i l i t y )  e ' 27 30 However t h e  r e s i d u a l  energy dependence 

of t h e  middle term i n  Eq. (13) w i l l  cause a "skewing" of t h e  resonance 

peaks of rd(E,J) relative t o  those  of the I A ( E , J )  f unc t ion ,  which may 

b e  s u f f i c i e n t  t o  cause a s i g n i f i c a n t  d i f f e r e n c e  between t h e i r  r e s p e c t i v e  

m a x i m a .  This ques t ion  i s  examined below us ing  exact numerical ly  calcu- 

24 l a t e d  wave func t ions  f o r  ground-state H 

-9- 
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C. Resonance Behavior of t h e  Internal-Amplitude Function 

Buckingham and Fox7 noted t h a t  t h e  i n t e r n a l  amplitude passes  

through a maximum a t  resonance, and both Al l i son27 and Jackson and 

Wyatt3' suggested q u a n t i t a t i v e  cr i ter ia  f o r  l o c a t i n g  resonances,  based 

on t h i s  e f f e c t .  I n  Ref.  (27)  t h e  resonance energy was taken as t h a t  

corresponding t o  t h e  minimum i n  t h e  asymptotic normal iza t ion  of t h e  

wave func t ions  obta ined  on numerical ly  i n t e g r a t i n g  from "constant  

i n i t i a l  condi t ions"  a t  t h e  inne r  boundary (where R -t 0 ) .  

t h e  u n c e r t a i n t y  inhe ren t  i n  t h e  d e f i n i t i o n  of t h i s  cons tan t  i n i t i a l  

condi t ion ,  i n  Ref.  (30) t h e  resonance energy w a s  l oca t ed  a t  t h e  maxi- 

mum i n  t h e  " r a t i o  of t h e  maximum ampli tude i n s i d e  t h e  c e n t r i f u g a l  

b a r r i e r  over t h e  amplitude a t  l a r g e  i n t e r n u c l e a r  dis tances" .  

both t h e s e  approaches neg lec t  t h e  a d d i t i o n a l  E-' energy dependence of 

t h e  asymptot ic  normal iza t ion  ( see  Eq. (7) ) ,  which can be  f a i r l y  

i r rportant  f o r  broad low-lying resonances.  

Because of 

However, 

38 

I n  t h e  present  work, exac t  numerical  continuum wave func t ions  

were ca l cu la t ed  and given t h e  asymptot ic  normal iza t ion  appropr i a t e  

t o  a cons tan t  dens i ty  of states (see Eq. ( 7 ) ) .  Then quadra tures  were 

c a r r i e d  out  from t h e  o r i g i n  t o  R(n)(E),  t h e  nth node of Y (R) ly ing  

i n s i d e  t h e  p o t e n t i a l  b a r r i e r ,  and a convenient ly  sca l ed  amplitude 
E9J 

func t ion  def ined  as 

J 

0 
-10- 
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where (as  i n  Eq. (9 ) )  R1(E) i s  t h e  innermost classical tu rn ing  po in t .  

I n  F i g s .  3 and 4 t h e  i n t e r n a l  amplitude func t ions  ( r i g h t  o r d i n a t e  

scale) def ined  by Eq. 

( lower dashed curves)  

curves l e f t  o r d i n a t e  

The IA(E,J) va lues  i n  

(14) f o r  n = 1 (upper dashed curves)  and n = 4 

are compared t o  t h e  'I (E,J) func t ions  ( s o l i d  d 

scale) f o r  several J va lues  f o r  ground-state  H2" 

F igs .  3 and 4 have u n i t s  [cm] and correspond 

t o  t h e  cons tan t  A i n  Eq. ( 7 )  being A = ( 4  1-1 c soh)', where a i s  the 

Bohr r ad ius .  While t h e  abso lu te  va lue  of IA(n'(E,J) depends on n 9  

t h e  f u n c t i o n a l  dependence on E i s  v i r t u a l l y  independent of n f o r  

R(n)(E) < RmaX(J)) where Rmax(J) i s  t h e  p o s i t i o n  of t h e  p o t e n t i a l  

b a r r i e r  maximum a 

0 

39 

For t h e  broad H resonances c l o s e s t  t o  t h e  b a r r i e r  maxima t h e  2 

resonance p o s i t i o n s  def ined  by t h e  maxima i n  T (E,J) and IA(E,J) are 

compared i n  Table I (columns 3 and 4 )  The FWHM of t h e  IA(E,  J) peaks 

( l a s t  column) are a l s o  compared t h e r e  t o  FWHM(T ), and t o  t h e  widths  

p red ic t ed  by Eq. (5 ) .  It is evident  t h a t  t h e  I A ( m a x )  c r i t e r i o n  always 

d 

d 

p laces  the resonances a t  s l i g h t l y  h ighe r  ene rg ie s  than  does T (max), 

t h e  d i f f e r e n c e s  be ing  about 5% of t h e  widths  re4' Also, though t h e  

d 

IA(E,J) peaks are skewed t o  higher  energy re la t ive t o  t h e  more 

symmetrical T ( E , J )  maxima, t h e  FWHM of t h e  two func t ions  are s t i l l  

i n  good accord wi th  each o t h e r ,  and wi th  t h e  widths  y i e lded  by Eq. (5) 

Only f o r  t h e  very  broad resonances ly ing  w e l l  above t h e  b a r r i e r  o r  at 

d 

low J and E does t h e  re la t ive magnitude of  t h e  non-resonance background 

s i g n i f i c a n t l y  a l ter  t h i s  coqclusion.  Examples of t h i s  are t h e  v = 1 4 ,  

-11- 
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J = 6 and 7 resonances i n  F ig .  3, and t h e  v = 7 ,  J = 25 resonances i n  

F ig .  4 .  However, t h e s e  cases are r e l a t i v e l y  unimportant,  as t h e  

s t r u c t u r e  i s  t o o  d i f f u s e  t o  b e  spec t roscop ica l ly  observable  and t h e  

c o l l i s i o n  delay t i m e  too  small t o  b e  of phys i ca l  in terest .  

The f a c t  t h a t  the i n t e r n a b a m p l i t u d e  c r i t e r i o n  p l aces  resonances 

a t  ene rg ie s  h ighe r  than  those  of t h e  maxima i n  r ( E , J )  w a s  p rev ious ly  

noted i n  Ref.  (27) f o r  one p a r t i c u l a r  quasibound level  of H2 (v  = 14, 

J = 5 ) s  

and t h a t  t h e  magnitude of the displacement i s  p ropor t iona l  t o  t h e  

resonance width.  

quasibound levels a t  s l i g h t l y  h ighe r  ene rg ie s  than  y i e lded  by t h e  time- 

d 

It i s  seen h e r e  t h a t  t h i s  is  probably t rue  f o r  a l l  resonances,  

Thus, spec t roscop ic  measurements should p l a c e  

de lay  (or  phase s h i f t )  a n a l y s i s .  However, due t o  t h e  complicating e f f e c t  

of t h e  background phase13 t h e  d i f f e rences  would probably b e  unobservable 

i n  a comparison wi th  p o s s i b l e  molecular beam cross-sec t ion  measure- 

ment s . 
An e f f e c t  which may d i s t o r t  t h e  spec t roscopic  imp l i ca t ions  of 

t h e  IA(E,J) a n a l y s i s  arises from t h e  f a c t  t h a t  t h e  sepa ra t ion  of 

v a r i a b l e s  i n  Eq. (8) i s  only approximate, p a r t i c u l a r l y  f o r  broad low- 

energy resonances.  

t h e  nodal  s t r u c t u r e  of t h e  continuum wave func t ion  ( i e e e 9  of c $ ~ ( R )  i n  

E q .  (8)) w i l l  t end  t o  skew t h e  t r a n s i t i o n  p r o b a b i l i t y  of express ion  

(6) re la t ive  t o  t h e  I A ( E , J )  peak. 

tude  w i l l  depend on t h e  p a r t i c u l a r  d i s c r e t e  s ta te  (Yd(R) i n  express ion  

(6)) connected t o  t h e  resonance by t h e  t r a n s i t i o n ,  Howeverk i f  t h i s  

This  means t h a t  t h e  r e s i d u a l  dependence on E of  

Of course  t h e  d i r e c t i o n  and magni- 

-12- 
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skewing i s  s t e e p  enough t h e r e  may be  a s i g n i f i c a n t  s h i f t  of t h e  

t r a n s i t i o n  p r o b a b i l i t y  peak away from IA(max). Furthermore, i f  

t h i s  displacement is a s i g n i f i c a n t  f r a c t i o n  of r ,  i t  could also 

r e s u l t  i n  a cons iderable  narrowing of t h e  s p e c t r a l  l i n e  re la t ive  

t o  t h e  FWHM(1A). 41 

IV.  ACCURACY OF PRESENT RESONMCE ENERGIES AND WIDTHS FOR GROUND- 

STATE MOLECULAR HYDROGEN 

2 The Kokos-Wolniewicz (KW) po ten t ia l2"  22 f o r  ground-state  H 

was  t h e  f i r s t  ab i n i t i o  p o t e n t i a l  t o  achieve "spectroscopic  

accuracy", y i e l d i n g  a b e t t e r  d i s s o c i a t i o n  energy than t h e  experf-  

mental  va lue  then  a v a i l a b l e .  However, a n a l y s i s  of t h e  42 ,43  

v i b r a t i o n a l  level  spectrum ind ica t ed  t h a t  even a f t e r  non-adiabat ic  

e f f e c t s  were taken  i n t o  account,  t h i s  p o t e n t i a l  s t i l l  r equ i r ed  

small c o r r e c t i o n s  a t  moderately long range.  44 One i n d i c a t i o n  

of t h i s  is  t h e  f a c t  t h a t  t h e  v = 1 4  J = 4 H2 resonance 

p red ic t ed  from t h e  KW p o t e n t i a l  l i es  3 . 8  cm-' above t h e  

-13- 
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d i s s o c i a t i o n  l i m i t ,  while experiment shows it  t o  b e  bound by 

0.8 (4- - 0.5) 

implies  t h a t  t h i s  quasgbound Level should no t  have been u t i l i z e d  i n  

t h e  c a l c u l a t i o n  of t h e  termolecular  recombination r a t e  f o r  atomic 

hydrogen ( s e e  Ref a ( 2 ) )  .46 Apart from t h i s ,  e r r o r s  introduced by 

ignoring non-adiabatic e f f e c t s  and omi t t ing  t h e  empi r i ca l  p o t e n t i a l  

This p a r t i c u l a r  e r r o r  i s  s i g n i f i c a n t ?  s i n c e  i t  

w i l l  b e  small. Correc t ing  f o r  them would s h i f t  t h e  

p red ic t ed  resonances some 0 - 6 an-' t o  lower energy, wh i l e  not s i g n i -  

f i c a n t l y  a f f e c t i n g  t h e  widths ,  as is  shown below. 

The inf luence  of t h e  empi r i ca l  p o t e n t i a l  A" on t h e  

resonances considered i n  Table I is  shown i n  Table  11; c l e a r l y  t h e  

e f f e c t s  on both t h e  energ ies  and widths  i s  q u i t e  small. The continued 

neg lec t  of nonadiaba t ic  e f f e c t s  i s  q u i t e  unimportant f o r  t h e s e  cases, 

s i n c e  t h e i r  magnitude depends on the expec ta t ion  value of t h e  k i n e t i c  

energy 44347 which becomes very  small f o r  levels nea r  t h e  top of t h e  

c e n t r i f u g a l  b a r r i e r . 4 8  

b r ing  t h e  experimental  and ca lLula ted  J = 0 v i b r a t i o n a l  ene rg ie s  

( inc luding  t h e  nonadiaba t ic  c ~ r r e c t i o n ~ ~ )  i n t o  agreement " t h e  r e s u l t s  

i n  Table I1 are e s s e n t i a l l y  c o r r e c t  and u n l i k e l y  t o  be  s i g n i f i c a n t l y  

a l t e r e d  by f u r t h e r  improvements i n  t h e  p o t e n t i a l .  

Since the  c o r r e c t i o n  A" w a s  def ined  s o  as t o  

Indeed, when t h e  

nonadiaba t ic  c o r r e c t i o n  (fol lowing Ref. ( 4 4 ) )  w a s  added in ,  t h e  v = 1 4 ,  

J = 4 level i n  Table I1 becomes b a r e l y  bound wi th  an eigenvalue of 

- 0.08 (& 0.15) ctn-l, almost (wi th in  mutual u n c e r t a i n t i e s )  t h e  

experimental  va lue  of - ,8  (4- 0.5) cm-l  Howeverg t h e  Ref ( 4 4 )  

-14- 
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estimates of the nonadiaba t ic  co r rec t ions  are be l i eved  t o  

l a r g e ,  s o  t h a t  f u r t h e r  small co r rec t ions  t o  t h e  p o t e n t i a l  

b e  s l i g h t l y  

may be 

needed ( i . e .  

I n  any case ,  none of t h e  resonance ene rg ie s  of Table E 1  is  Likely t o  

-1 
change by more than  1.5 - 2,O an 

i nc reas ing  A" s l i g h t l y ,  p a r t i c u l a r l y  a t  long range)  

A f u r t h e r  demonstration of t h e  i n s e n s i t i v f t y  of t h e  resonance 

widths t o  moderate changes i n  t h e  p o t e n t i a l  w i l l  be  d iscussed  in 

Sect ion  V I .  

A compilat ion of t h e  energ ies  of a l l  quasibound levels of ground- 

and t h e  widths  state H 2 9  HD, and D2 wi th  widths  of less than  EO0 

f o r  t hose  which are broader  than 0.05 cm-' i s  a v a i l a b l e  fa  Ref,  ( 4 8 ) .  

The locus  of t h e  c e n t r i f u g a l  b a r r i e r  maximum as a func t ion  of J is  a l s o  

given t h e r e .  

49 i n  t h e  p re sen t  c a l c u l a t i o n s  are a l s o  a v a i l a b l e .  

Annotated FORTRAN l i s t i n g s  of t h e  computer programs used 

v. ROTATIONAL PREDISSOCIATION BROADENING AND THE LIMITING CURVE OF 

DISSOCIATION (LCD) 

The onse t  of l i n e  broadening, followed by t h e  "breaking-off" of 

a ro ta t iona l .  series is  o f t e n  r e l a t e d  t o  t h e  h e i g h t  of t h e  maximum i n  

t h e  e f f e c t i v e  p o t e n t i a l  U(R) a r i s i n g  from t h e  c e n t r i f u g a l  potent ia l .  

f o r  a g iven  J va lue .  '9920 

func t ion  of J(3-I-1) 

(LCD), and its e x t r a p o l a t i o n  t o  ze ro  J has  long been used as a means 

of ob ta in ing  d ia tomic  d i s s o c i a t i o n  limits This r e l a t i o n  has  been 

The locus  of t h e  energy of t h i s  onset as a 

i s  known as t h e  l i m i t i n g  curve of d i s s o c i a t i o n  

-15- 
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f u r t h e r  exp lo i t ed  by Bernstein14 who r e l a t e d  t h e  shape of t h e  LCD t o  

t h e  n a t u r e  of t h e  long-range in t e ra tomic  p o t e n t i a l  t a i l ,  H i s  t rea tment  

involved two assumptions: ( i )  t h e  long-range p o t e n t i a l  may be  accu ra t e ly  

approximated by a s i n g l e  inverse-power term f o r  R values nea r  t h e  cen- 

t r i f u g a l  b a r r i e r  maxima f o r  t h e  J va lues  considered,  and (ii) t h e  

experimental  LCD is i d e n t i c a l  t o  t h e  locus  of ( c e n t r i f u g a l )  b a r r i e r  

m a x i m a  ( h e r e a f t e r  des igna ted  LBM) The second of t h e s e  assumptions 

is  c r i t i c a f l y  examined below. 

l +  
'g 

I n  Pig.  5 (lower h a l f )  is  p l o t t e d  t h e  LBM f o r  t h e  ground (X C ) 

states of 

i n d i c a t e d  reduced a b s c i s s a  scale. 

p red ic t ed  experimental. L C D ' s  ( i . e - ,  t h e  onse t  of observable  pred is -  

s o c i a t i o n  broadening) ,  def ined  as t h e  l o c i  of t h e  ene rg ie s  of quasibound 

levels having wid ths  

HD and D2; t h e  t h r e e  i so topes  are combined by u s e  of t h e  

The dashed curves r ep resen t  t h e  

Also shown are t h e  "e r ro r  terms" AE, i e e e ,  t h e  d i f f e r e n c e s  between t h e  

LBM and t h e  p red ic t ed  ECD curves,  which range from 10 t o  40% of t h e  LBM 

energy wi th  t h e  g r e a t e s t  re la t ive e r r o r  a t  small J. Thus, i t  is clear 

t h a t  t h e  p r e d i s s o c i a t i o n  a n a l y s i s  of Ref. (14) should no t  b e  app l i ed  

t o  diatomic hydr ides  o r  deu te r ides ,  and should probably b e  used 

cau t ious ly  f o r  o t h e r  l i g h t  diatomics  50 
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VI. RAPED AND A C C m T E  DETERMINATION OF RESONANCE ENERGIES, AND THE 

WKB APPROXIMATION FOR THEIR WIDTHS 

A. Determination of Resonance Energies  

Most of t h e  procedures suggested f o r  l o c a t i n g  quasibound states 

e i t h e r  u t i l i z e  an asymptot ic  proper ty  of t h e  wave func t ion ,  o r  treat  

t h e  resonances as bound levels wi th  a d i s c r e t e  ou te r  boundary condi- 

t i o n .  The f i r s t  t y p e  inc ludes  t h e  approaches d iscussed  i n  t h e  

preceding s e c t i o n s ,  def in ing  t h e  resonance energy as a maximum of t h e  

T ~ ( E , J )  o r  PA(E,J) func t ion .  These r e q u i r e  cons iderable  computational 

e f f o r t ;  t h e  wave func t ion  must be  numerical ly  i n t e g r a t e d  out  t o  t h e  

asymptot ic  reg ion  where t h e  non-cent r i fuga l  p a r t  of t h e  p o t e n t i a l  i s  

n e g l i g i b l e ,  and t h e r e  i s  no e f f i c i e n t  a lgor i thm f o r  converging on a 

resonance.53 

estimates of t h e  widths  of very sharp  resonances un le s s  t h e  e n t i r e  

c a l c u l a t i o n  is  performed i n  h u l t i p l e  p r e c i s i o n  a r i t h m e t i c  capable  of 

I n  a d d i t i o n ,  t h e s e  methods do n o t  r e a d i l y  y i e l d  reasonable  

r e so lv ing  T. 

~: I n  t h e  boundary condi t ion  (BC) method one, tries t o  sedec t  a 

d i s c r e t e  c r i t e r i o n  f o r  t h e  wave func t ion  at some a r b i t r a r y  ou te r  

boundary (such as the b a r r i e r  maximum) which corresponds t o  t h e  maximum 

of ‘rd(E,J) or IA(E,J ) ,  Cambining t h i s  wi th  t h e  usua l  inner  boundary 

cond i t ion  y i e l d s  a s imple one-dimensional e igenvalue  problem wi th  no 

n e c e s s i t y  of numerical ly  i n t e g r a t i n g  p a s t  t h e  chosen o u t e r  boundary. 
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7 .  - 112 

This a l s o  al lows u t i l i z a t i o n  of t h e  eigenvalue predic tor -cor rec tor  

formula which au tomat ica l ly  converges very  r a p i d l y  t o  t h e  e igenvalue  

n e a r e s t  t o  t h e  a r b i t r a r y  i n i t i a l  t r i a l  energy,  54 

Other approximate methods of l o c a t i n g  resonances f a l l  i n t o  n e i t h e r  

of t h e  ca t egor i e s  descr ibed  above, i n  p a r t i c u l a r ,  t h e  method of Ref. (28) 

and t h e  bOun$-state approach of Ref. (16) While these  approaches 

avoid t h e  n e e e s s i t y  of i n t e g r a t i n g  beyond t h e  p o t e n t i a l  b a r r i e r ,  they  

do no t  i nc lude  a means of r a p i d l y  conve rghg  on t h e  resonance energy, as 

is  introduced by t h e  u s e  of a d i s c r e t e  ou te r  boundary condi t ion .  

Hences they  w i l l  n o t  b e  considered f u r t h e r .  

5 4  

Severa l  d i f f e r e n t  o u t e r  BC'S were t e s t e d  here .  These r equ i r ed ,  

r e s p e c t i v e l y ,  t h a t  t h e  wave func t ion:  

b a r r i e r  m a x i m u m ,  R 

classical tu rn ing  p o i n t ,  R3(E),56 (iii> behave as an Airy func t ion  of 

t h e  second kind a t  R,(E),5' ( i v )  behave as t h e  f i r s t - o r d e r  WKB 

s o l u t i o n  wi th  nega t ive  exponent (exponent ia l ly  increas ing  inwards) 

a t  Rmax(J),59 (v) have a node a t  R3(E), and ( v i )  have a node a t  

Rmax 

H 

those  def ined  by t h e  maxima i n  IA(E,J). 

(5.) have zero s lope  a t  t h e  

(J) ,55956 (ii) have zero s l o p e  a t  t h e  outermost max 

(J). I n  Table 111 t h e  ene rg ie s  of t h e  broad quasibound levels of 

ca l cu la t ed  us ing  t h e  f i r s t  f i v e  of t h e s e  cri teria are compared t o  

Considering t h e s e  s h i f t s  i n  

2 

u n i t s  of t h e  r e s p e c t i v e  widths  r (from Table  E )  shows t h a t :  BC(I) 

y i e l d s  e igenvalues  t o o  low by some 250% of l?;60 B C ( i i )  r e s u l t s  are t o o  

low by - ca. 75% of rg60 BC( i i i )  i s  t h e  b e s t  c r i t e r i o n  cons idered ,  

y i e l d i n g  e igenvalues  i n  e r r o r  by only - -  ca. 4- 4% of r ;  BC(iv) r e s u l t s  

are either too  h i g h  o r  t oo  low, w i t h  average e r r o r s  of ca. -I= 25% -- 
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of r; BC(v) p r e d i c t s  resonance p o s i t i o n s  which are too  high by E. 
100% of To6 '  

inward wi th  inc reas ing  energy d i s c r e d i t s  B C ( v i ) ,  s i n c e  n e c e s s a r i l y  

I n  a d d i t i o n ,  t h e  f a c t  t h a t  wave func t ion  nodes move 

where t h e  e q u a l i t i e s  hold only  a t  t h e  ene rg ie s  of t h e  b a r r i e r  maxima 

where R (J) = R2(E) = R3(E). The magnitudes of t h e  s h i f t s  

descr ibed  above should b e  considered i n  l i g h t  of t h e  f a c t  t h a t  t h e  

average d i f f e r e n c e  between Td(max) and IA(max) i s  5% of T. 

max 

6 1  

Since t h e  Airy-function boundary cond i t ion  [ B C ( i i i ) ]  y i e l d s  t h e  

b e s t  r e s u l t s ,  t h e  resanance p o s i t i o n s  i t  p r e d i c t s  are l i s t e d  i n  Table 1 

(column 5 ) .  Of t h e  o t h e r  cr i ter ia ,  BC(i) and (ii) may a l s o  be of 

some p r a c t i c a l  u se  f o r  de t ec t ing  resonances which l i e  s l i g h t l y  above 

t h e  b a r r i e r  maximum, where they cannot be  loca ted  by B C g i i i ) .  

However, i n  most cases t h e  Airy-function approach, i n  a d d i t i o n  t o  being 

most accu ra t e ,  success fu l ly  d e t e c t s  a l l  important  resonances.  

except  f o r  (v,S) = (9 ,19) ,  ( l 2 , l 2 ) ,  ( l 3 ,9 )  and ( l4 ,5 )  [see Tables  1 

62 

For H2, 

and 1111, t h e  only resonances undetec tab le  by t h i s  approach l a y  s i g n i -  

f i c a n t l y  above t h e  c e n t r i f u g a l  b a r r i e r ,  wi th  widths  100 cm-'. 

B ,  WKB APPROXIMATION FOR RESONANCE WIDTHS 

The p r e d i s s o c i a t i o n  l ifetime T of a quasibound state may be 

obtained semic la s s i ca l ly24  as t h e  product of w, t h e  p r o b a b i l i t y  pe r  

c o l l i s i o n  of tunnel ing  through t h e  b a r r i e r ,  t i m e s  t t h e  per iod  of vib 
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o s c i l l a t i o n  i n  t h e  p o t e n t i a l  w e l l .  The la t te r  i s  simpiy t h e  quadra- 

t u r e  over t h e  p o t e n t i a l  minimum 
R2 (E) 

where R (E) and R2(E) are t h e  f i r s t  two classical  tu rn ing  p o i n t s ,  

a t  which t h e  e f f e c t i v e  potent ia l .  

1 

Simi la r ly  t h e  former involves  a quadra ture  "through t h e  b a r r i e r " ,  

y i e  l d  ing 

w = exp [U(R) - E]' d 9 (16) 

where R,(E> is t h e  t h i r d  (outermost) c l a s s i c a l  t u rn ing  po in t .  

by the unce r t a in ty  p r i n c i p l e ,  t h e  leve l  width i s  

Thus, 

Resonance wid ths  f o r  H2 ca lcu la t ed  from Eqs. (15-17) a t  t h e  ene rg ie s  

corresponding t o  t h e  Airy-function boundary condi t ion  are presented  

i n  column 6 ("WB") of Table I; they  are wi th in  ca, 12% of 

t h e  more a c c u r a t e  estimates of columns 7-9. It should be  noted t h a t  

Eqs. (15-17) provide estimates of widths  ( o r  quasibound-level p red i s soc i -  

a t i o n  l i f e t i m e s )  f o r  resonances which are f a r  t oo  narrow f o r  convenient 

eva lua t ion  by t h e  methods of s e c t i o n s  11 and IIE. 

-20- 
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It is i n t e r e s t i n g  t o  consider  t h e  dependence of t h e s e  WKB wid ths  on 

t h e  e s t ima te .o f  t h e  resonance energy. This  is  convenient ly  done by 

eva lua t ing  E q s .  (15-17) a t  t h e  resonance ene rg ie s  p red ic t ed  by f ive 

of t h e  boundary condi t ions  d iscussed  above. 

i n  t h e  second half ,  of Table 111. 

is  s m a l l  enough t h a t  no s i g n i f i c a n t  e r r o r s  are introduced i n t o  t h e  WKB 

widths  i n  Table  P by t h e  displacements of t h e  Airy-function eigenvalues  

from t h e  exact  resonaL;ce ene rg ie s ,  

a l s o  confirms t h e  conclusion (see Sec t ion  I V )  t h a t  any f u t u r e  co r rec t ions  

The r e s u l t s  are presented  

The energy dependence of t h e  widths  

This s m a l l  energy dependence 

r equ i r ed  by t h e  a b  i n i t i o  ground-state H p o t e n t i a l  would n o t  s ign i -  

f i c a n t l y  a f f e c t  t h e  resonance widths  given i n  Table 11. 

2 

An e n t i r e l y  d i f f e r e n t  procedure ( t h e  " s t a b i l i z a t i o n  method") f o r  

determining resonance energ ies  and widths  has  been descr ibed  by Hazi . 

and Taylor .  63 

t o  t h e  multi-channel case (compound-state resonances) ;  6 4  

However, i t  would appear t o  b e  most u s e f u l  as genera l ized  

i t  seems 

e s s a r i l y  complicated f o r  t h e  p r a c t i c a l  d e s c r i p t i o n  of s i n g l e -  

channel (shape) resonances.  

-21- 
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APPENDIX A: Ca lcu la t ion  of Td(E,J) and V e r i f i c a t i o n  of Eq, ( 4 )  

Smith's'' c o l l i s i o n  delay t i m e  T ~ ( E , J )  ( h i s  Q(E) o r  QkR(E)) i s  

t h e  d i f f e r e n c e  between t h e  t i m e  two p a r t i c l e s  spend toge the r  during 

a n  a c t u a l  c o l l i s i o n  wi th  energy E, and t h e  t r a n s i t  t i m e  f o r  t h e  same 

i n i t i a l  cond i t io  i n  t h e  absence of an i n t e r a c t i o n  p o t e n t i a l .  Here 

t h e  o r b i t a l  angular  momentum quantum number J (Smith's  R )  merely 

s p e c i f i e s  t h e  magnitude of t h e  c e n t r i f u g a l  con t r ibu t ion  t o  t h e  

e f f e c t i v e  p o t e n t i a l .  Smith showed t h a t  t h i s  "delay t i m e "  w a s  

where t h e  exact r a d i a l  wave func t ion  i s  asymptot ica l ly  normalized as 

wi th  n o t a t i o n  as i n  Sec t ions  I1 and 111. For.most  cases of i n t e r e s t  

( i a e e 9  those  considered he re )  t h e  non-centr i fugal  p a r t  of t h e  i n t e r -  

a c t i o n  p o t e n t i a l  is e f f e c t i v e l y  n e g l i g i b l e  a t  some f i n f t e  i n t e r n u c l e a r  

d i s t a n c e  R+. 

from 

Thus, f o r  a l l  R R+ t h e  exact  s o l u t i o n  is i n d i s t i n g u i s h a b l e  

where j,(z) and y ( z )  are t h e  s p h e r i c a l  Bessel func t ions  of t h e  f i r s t  J 

and second kind.65 I n  t h e  present  approach, as i n  t h e  s tandard  phase 

s h i f t  ca lc .u la t ion ,  exact  numerical  i n t e g r a t i o n  of t h e  r a d i a l  wave 

equat ion  is performed out  t o  t h e  smallest such R There t h e  s o l u t i o n  +" 
-22- 
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i s  decomposed i n t o  t h e  form of Eq, (A3) t o  y i e l d  6 (E) and given 

t h e  d e s i r e d  asymptot ic  normalizat ion.  

Eq. ( A l )  becomes 

J 

9 
Then, de f in ing  Z+ Z 

0 

Here t h e  i n t e g r a l  may be  r e a d i l y  computed from t h e  exac t  numerical  

wave func t ion ,  and t h e  r e s i d u a l  asymptot ic  c o n t r i b u t i o n  
M 

where z f kR, and Y and Yco are g iven  by Eqs. (A3) and (A2) r e s p e c t i v e l y ,  

may b e  computed e s s e n t i a l l y  a n a l y t i c a l l y .  

For J = 0 , A ( Z + , J )  is  i d e n t i c a l l y  zero ,  whi le  i t s  eva lua t ion  

f x  J > 0 is  descr ibed  below. The magnitude of t h i s  term clearly 

depends on t h e  c r i t e r i o n  used f o r  s e l e c t i n g  Z+ ( i . e . ,  f o r  s e l e c t i n g  

R+). 

and r equ i r ing  d i f f e r e n c e s  of - e 

6J(E) eva lua ted  a t  t h r e e  consecut ive  wave func t ion  nodes. 23b The rela- 

t ive con t r ibu t ion  of A(Z+,J) t o  t h e  sum i n  Eq. (A49 v a r i e d  from being a 

n e g l i g i b l e  f r a c t i o n  ('at a very  sharp  resonance) ,  t o  becoming the 

I n  t h e  p re sen t  c a l c u l a t i o n  t h i s  w a s  done by cons t r a in ing  Z > J 
4- 

r ad ians  between t h e  va lues  of 

dominant t e r m  both a t  broad resonances and away from resonance. 

-23- 
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65 Using t h e  Rayleigh expansion f o r  t h e  Bessel func t ions  i n  E q .  (A3) 

one obta ins :  

i = O  

where f o r  t h e  c o e f f i c i e n t s  $ : 

f o r  a l l  J 

f o r  a l l  m > J 

A s imple  c o r o l l a r y  t o  E q s ,  (A7) i s  

J J-1 - (2J-1)NJ-1 J-1 NJ - NJ 

S u b s t i t u t i n g  E q s .  (A6) i n t o  Eq. ( A 3 ) ,  and t h e  la t ter  and Eq. (A2) i n t o  

E q .  , ( A 5 )  y i e l d s :  

m BY and CJ are simple func t ions  of t h e  known N" c o e f f i c i e n t s :  where AJ , m 
J 
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p $-n-1 min [m-1, J-m] J -m 
J J A: = (-1) 

n = O  

2 

C'J: = 4- ( - l )n  $* NJ m-nj 

The remaining f a c t o r s  i n  Eq. (A8) are t h e  quadra tures  
w 
P 

s i n ( 2 z  $. 2 6 ~ )  dz 
Zm-1 S(2m-1) = 

z z+ 
W 

dz cos(2z e 285) C(2m-2) = 
2m-2 z 

Zt 
which are r e l a t e d  through t h e  r ecu r s ion  r e l a t i o n s  

2 (z+) zm-l 

C(2m-2) = -*sin(2Z+ + 2 6 ~ )  + (m - 1) S(2m-1) 

2 (2,) 2m-2 

These r e l a t i o n s  are used t o  gene ra t e  t h e  terms i n  t h e  sum i n  E q .  (A8) 

as m 

va lue .  

repea ted  a p p l i c a t i o n s  of Eqs. ( A l O ] ,  A f t e r  n i t e r a t i o n s  i t  becomes 

decreases  from J t o  1;66 thus one needs C(2J) as a s t a r t i n g  

Making u s e  of t h e  f a c t  t h a t  Z+ > J, C(2J) may be expanded by 
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where 

2n - 1 
R(n) = ( - l )n  C(2J f 2n) (J 4- k/2) e 

k = O  

It is  r e a d i l y  seen t h a t  

9 

and hence t h e  series i n  Eq. (All)  converges f o r  n c n where n 

is t h e  l a r g e s t  i n t e g e r  c (Z+ + 1 - J) a 

Eq. (A13) i s  no t  n e g l i g i b l e  f o r  n = nmaX9 t h e  remainder R(n 

max' max 

I f  t h e  bound given by 

) may max 
b e  eva lua ted  us ing  a numerical  quadra ture  f o r  C(2J 4- 2nmaX)- 

of t h e  l a r g e  power of z i n  t h e  denominator, t h i s  r equ i r e s  very  few 

Because 

mesh p o i n t s .  

The eva lua t ion  of A(z+,J) v i a  Eqs. (A7) - (A13) w a s  t e s t e d  f o r  

a number of cases by comparing t h e  r e s u l t s  t o  a numerical quadra ture  

of Eq. (A5) w i t h  express ions  (A2) and (A3) s u b s t i t u t e d  f o r  Y and Yw. 

For 1 < J c 30 and Z+ = 25 t h e  numerical  quadra tures  (which r equ i r ed  

orders  of magnitude more computation t ime) were i n  e x c e l l e n t  agreement 

wi th  t h e  "ana ly t ic"  r e s u l t s  from Eqs. (A7) - (A13) e '' 
- -  

I n  t h e  present  

-2 6- 
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c a l c u l a t i o n s  on ground-state  H HD, and D t h e  t o t a l  t i m e  delay 

computation, inc luding  t h e  c a l c u l a t i o n  of t h e  phase s h i f t ,  t ook  on 

t h e  average less than  012 sec f o r  a given J and E , 6 8  compared t o  

0.15 sec f o r  t h e  

2? 2 

17 eva lua t ion  of t h e  phase s h i f t  a lone .  

For t h e  t i m e  delay def ined  by Eq. (Al) Smith" proved t h e  

i d e n t i t y  of Eq. ( 4 ) ;  t h i s  i s  used h e r e  as a cheek on t h e  present  

method of c a l c u l a t i n g  T ~ ( E , J ) .  

2 "  by Waech and Bernstein" i n  t h e i r  phase s h i f t  c a l c u l a t i o n s  f o r  H 

For t h e  resonance ene rg ie s  l i s t e d  i n  t h e i r  Table  V , 1 6  whose widths  

range from 3 t o  150 c m - l 9  t h e  present  approach ( i ae . ,  u s e  of Eqs. (A4) 

The p o t e n t i a l  used w a s  t h a t  employed 

and (A7-Al3)) y i e lded  widths  d i f f e r i n g  w i t h  t h e i r s  on t h e  average 

by - f 5%.69 These d i f f e r e n c e s  r e f l e c t  both t h e  lower 

accuracy of t h e  computations of Ref. (16) and e r r o r  introduced 

through t h e  f i n i t e  d i f f e r e n c e  approximation they  used f o r  t h e  der iva-  

t ive  i n  Eqs. ( 4 ) .  This latter e f f e c t  is  a d i f f i c u l t y  inhe ren t  i n  any 

c a l c u l a t i o n  of de lay  times using Eq. ( 4 ) .  
-1 here  f o r  H2 f o r  J = 8 a t  E = 89.95 cm 

of t h e  v = 13, J = 8 resonance ( f o r  which E = 89.93 cm-' 

and I' = 1.90 an-'). Using the first d i f f e r e n c e  formula (energ ies  i n  an-') 

This problem i s  i l l u s t r a t e d  

which is  very near  t h e  center 

r 

1 ~ ~ ( 8 9 . 9 5 ~ 8 )  = - - 
Trc - AE 

wi th  t h e  d i f f e r e n c e s  centered  a t  89.95 cm-lP  time de lays  f o r  d i f f e r e n t  

AE va lues  are given i n  Table I V ;  t h e  "correct"  va lue ,  obtained from 

Eq. ( A 4 )  is 1,119 x sec. The u n c e r t a i n t i e s  i n  Table I V  cor- 
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respond t o  es t imated  a b s o l u t e  phase s h i f t  accu rac i e s  of - 4- 0.0005 r ad ians .  

A s  expected, u s e  of a small AE mesh y i e l d s  a l o s s  of p r e c i s i o n  i n  t h e  

phase s h i f t  d i f f e r e n c e s ,  whi le  f o r  a l a r g e  mesh t h e  f i r s t  d i f f e r e n c e  

approximation f o r  t h e  d e r i v a t i v e  i s  no longer  accu ra t e .  

Annotated FORTRAN l i s t i n g s  of t h e  computer program used i n  t h e  p re sen t  

6 (E) and T ( E , J )  c a l c u l a t i o n s  are a v a i l a b l e  i n  Ref. ( 4 9 ) .  J d 
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TABLE TI. Best estimates of resonance ene rg ie s  and widths  f o r  ground- 
s ta te  H29 ca l cu la t ed  from the  "corrected" potential, i .e .  
inc luding  t h e  empirical co r rec t ion44  A'' (cE. Table E which 
corresponds t o  t h e  ab i n i t i o  po ten t i a l "  x n e )  

V J 

0 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
9 

10 
11 
11 
12 
12 
13  
13 
1 4  
1 4  
1 4  

38 
37 
35 
33 
31  
29 
27 
25 
23 
21. 
19 
18 
16 
1 4  
3.3 
1 2  
11 

9 
8 
6 
5 
4 

7509 2 
6513 .O 
5549.1 
4687 .O 
4923 .O 
3252 a 3 
2670 * 2 
2172.0 
1151.8 
1402 a 9 
1117 .O 

722.4 
582 .O 
475 0 7  

195.5 
380.3 
211.4 
191.4 

86 .a 
81.5 
44. 1 
1.0 

7513 6 5 
6513 .O 
5549 a 2 
4687.3 
3923 e 5 
3253 .O 
2671,O 
2172 * 8 
1753 * 0 
1405 0 4 
1123 I1 

722 - 4 
582 .O 
436 - 5  
195 .,5 
393 -1 
211,li 
200.8 

86.3 
114.8 

46.8 
1.0 

80.9 

14.4 
20.8 
24.3. 
25 $ 2  
25 - 7  
27.9. 
31.0 
40 .o 
58-3 

5.97 

o e 5 1  
2 -84  

0 -004 

2 .32  

1 , 4 8  

17.3 

71.3 

52 ,3  

104. 
1 7 - 4  
0 e 0005 

a> "Sca t te r ing  theory" resonance energy e 

b )  "Spectroscopic" quasibound level energy e 

c> This  is  i d e n t i c a l l y  2/(d6J/dE)maxe 

d) This  resonance w a s  t o o ,  sharp t o  r e so lve  I (rnax) convenient ly ,  s o  d 

t h i s  width w a s  ob ta ined  us ing  t h e  s e m i c l a s s i c a l  method d iscussed  i n  

Sec t ion  V I ,  A s  d iscussed  i n  t e x t ,  Herzberg and Hoiwe's observa t ions  

show t h i s  level  t o  b e  t r u l y  bound. 41 
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(1965) 
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S. Imam-Rahajoe, C ,  F. C u r t i s s ,  and R e  B. Berns te in ,  J. Chem. Phy.s. 

- 42,  530 (1965). 

2 The Equi l ibr ium Constant For 0 C H $OH(X 

a) L, Eisenbud, d i s s e r t a t i o n ,  Pr ince ton  Universi%y,  June 1948 

(unpubl ished);  b )  E.  P. Wigner, Phys. Rev. - 98, 145 (1955). 

F. T .  Smith, Phys. Rev. - 118, 349 (1960); erratum, i b i d ,  _I_ 119, 2089 

(1960) e 
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R. B .  Berns te in ,  C .  I?. Curt i ss ,  S. Imam-Rahajoe, and H e  Wood, 

J. Chem. Phys. s, 4072 (1966). 

R. B .  Berns te in ,  Phys 

J. W e  Pox and E.  Gal, Proc.  Phys. Soc, - 90, 55 (9967). 

T. G. Waech and R e  B. Berns te in ,  J ,  Chem. Phys. 46, 4905 (1967). 

M. E .  Gersh and R. B .  Berns te in ,  Chem. Phys. L e t t .  - 4 p  221 (1969). 

a) W. C ,  Stwal ley,  A. Niehaus, and D.  R.  Herschbach, Proc. 5 t h  

I n t .  Conf. Phys ics  of Elec t ron  and Atom C o l l i s i o n s ,  639 (1967); 

b )  W .  C ,  Stwal ley,  Ph.D. t h e s i s ,  Harvard Un ive r s i ty  (9968). 

See t h e  r e fe rences  mentioned i n  t h e  d i scuss lons  of r o t a t i o n a l  

p red i s soc fa t ion  by: a) G .  Herzberg, Spec t ra  of Diatomic Molecules, 

2nd e d i t i o n  (D. Van Nostrand Co,, Toronto, 1950); b) A .  G ,  Gaydon, 

D i s soc ia t ion  Energies  and Spec t ra  of Diatomic Molecules, 3rd e d i t i o n  

(Chapman. and H a l l  L t d . ,  London, 1968). 

P a r t i c u l a r l y  i l l umina t ing  examples of t h i s  are found i n  t h e  work, 

Rev. L e t t .  - 16,  385 (1966). 

t h r e e  decades a p a r t ,  of E. Parkas  and S. Levy (2 .  Physik 8 4 ,  195 - - 
(1933)) on ARH, and of T. L .  P o r t e r  (J. Opt. SOC. Am, - 52,  1201 (1962)) 

on HgH. 

a sha rp  Pine,  t o  a measurably broad one, and on t o  a b a r e l y  

d i sce rnab le  (very broad) one. 

a> 

b)  

Note t h a t  s i n c e  t h e  a d i a b a t i c  c o r r e c t i o n  t o  t h e  clamped-nuclei 

(Born-Oppenheimer) p o t e n t i a 1  i s  weighted by t h e  inve r se  of t h e  nuc lea r  

reduced mass 

are not  q u i t e  i d e n t i c a l .  

I n  both  c a s e s ) r o t a t i o n a l  progress ions  are followed from 

W. Kodos and E.  Wolnfewicz, J .  Chem. Phys ,, - 41, 3663 (1964) j 

i b i d ,  - 43, 2429 (1965); c) i b i d ,  - 49, 404 (1968). 

t h e  p o t e n t i a l s  f o r  t h e  i s o t o p i c a l l y  d i f f e r e n t  hydrogens 
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a )  R. A ,  Buckingham and A .  Dalgarno, Proe.  Roy. Soc, 8213, 506 

(1952); b )  R e  B.  Berns te in ,  J, Chem, Phys, - 3 3 ,  795 (1960). 

K. W. Ford, D .  L .  H i l l ,  M. Wakano, and J, A. Wheeler, Ann. Phys. 

(N. Y o )  - 7,  239 (1959),  

See, e , g , ,  E ,  Merzbacher, Quantum Mechanics (John Wiley and Sons, 

I n c . ,  New York, l 9 6 l ) ,  5 l2,6, 

This  sepa ra t ion  w a s  considered i n  Refs .  (27)  and (28) and an. 

i l l u s t r a t i o n  of t h e  d i f f i c u l t y  of proper ly  e f f e c t i n g  it i s  t h e  

conclusion i n  t h e  l a t t e r  t h a t  t h e  Er l a y  below, r a t h e r  than  above 

t h e  i n f l e c t i o n  p o i n t  of 6 J ( E ) e  

t i o n  of (E) from having well-defined p o s i t i v e  curva ture  a t  very  

h igh  ene rg ie s ,  through an  i n t e r v a l  of nega t ive  curva ture  about t h e  

The d i f f i c u l t y  l ies  i n  t h e  t r a n s i -  

J 

b a r r i e r  maximums t o  a cons tan t  m u l t i p l e  of 71 a t  energ ies  below t h e  

peak 7-9 This  s i t u a t i o n  c o n t r a s t s  wi th  t h a t  f o r  compound-state 

resonances where a background phase may o f t e n  b e  q u i t e  c l e a r l y  

def ined  i n  t h e  neighborhood of broad resonances.  

A .  C .  A l l i son ,  Chem. Phys. L e t t .  - 3 ,  371 (1969). 

29 

B .  R .  Johnson, G. G. Bal int-Kurt i ,  and R ,  D e  Levine, Chem, Phys. 
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Inc .  Englewood C l i f f s ,  N .  J, 1962) §A7 
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38 

The magnitude of t h i s  curva ture  i s  ind ica t ed  by t h e  change 

of t h e  "background" f u n c t i o n a l i t y  under t h e  broad, h ighes t  

i n  F igs .  l and 2.  

i n  s lope  

resonances 

An e legant  r e l a t i o n  between t h e  dens i ty  of states and t h e  asymptot ic  

normal iza t ion  of t h e  continuun? wave func t ion  is g iven  by: 

A. Messiah, Quantum Mechanics (North-Holland Publ ishing Co e ,  Amster- 

dam, 19621, Volume 11, 5 17-4 .  

These e f f e c t s  are c l e a r l y  i l l u s t r a t e d  by t h e  numerical ly  ca l cu la t ed  

wave func t ions  presented  i n  Pig. 2 of Ref. ( 7 )  and Fig.  1 of Ref ,  (30) .  

The clearest t rea tments  are t h o s e  of C ~ n n o r , ' ~  who used a n  inve r t ed  

pa rabo l i c  b a r r i e r ,  and D i ~ k i n s o n , ~ ~  who used an inve r t ed  Morse poten- 

t i a l .  These au tho r s  r e f e r  t o  and d i scuss  t h e  p r i o r  l i t e r a t u r e ,  

Note, however, t h a t  t h e  p r e s e n t l y  der ived  q u a l i t a t i v e  r e s u l t s  r e l a t i n g  

IA(E,J) and rd (E , J )  are a l s o  obta ined  from t h e  most p r i m i t i v e  approach 

t o  t h e  b a r r i e r  p e n e t r a t i o n  problem ( sees  e .g .  Ref ,  (24))  e 

a )  J .  N .  L.  Connor, Mol. Phys. - 15, 621 (1968); b )  i b i d ,  - 16,  525 

(1969). 

A. S. Dickinson, Mol. Phys. - 18, 441 (1970). 

This  neg lec t  may exp la in  why Ref.  (27) and t h e  present  work ag ree  

upon t h e  ( l4 ,4 )  and ( l 4 , 5 )  H2 resonance 

s c a t t e r i n g  theory c r i t e r i o n  (maximum of T ( E , J ) ) ,  bu t  t h e  former 

p l aces  t h e  I A ( E , J )  maximum f o r  t h e  20 cm-' broad ( l4 ,5 )  resanance 

a t  E -n 50.8 c m - l p  compared t o  t h e  present  4 9 2  cm ( see  Table I) 

ene rg ie s  suggested by t h e  

d 

-1 
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39.  This  was v e r i f i e d  f o r  a l l  p a r t i a l  waves (J va lues )  f o r  ground-state 

H29 where resonances occur  wi th  0-14 nodes i n s i d e  t h e  b a r r i e r  maximum. 

I n  any ease where t h e  peak p o s i t i o n s  d id  vary  w i t h  n ,  t h e  s h i f t s  

were always much smaller than t h e  d i f f e r e n c e  between t h e  p o s i t i o n s  

of t h e  r e s p e c t i v e  

was i tself  much smaller than  l' (e .g . ,  see t h e  v = 7 resonance f o r  

J = 25 i n  Fig.  4 ) .  

IA(n) ( E , J )  a l s o  shows an extremely broad b u t  i n s i g n i f i c a n t  maximum 

a t  an energy f a r  above t h e  b a r r i e r .  An example of t h i s  is  found i n  

t h e  IA'") ( E , 4 )  curves  a t  E 

Fig.  3 ) .  However, t h i s  type  of s t r u c t u r e  cannot b e  a s soc ia t ed  wi th  

a resonance s i n c e  t h e r e  i s  no corresponding s t r u c t u r e  i n  T (E,J), 

and because t h e  node count behind t h e  p o t e n t i a l  b a r r i e r  is more than  

one g r e a t e r  t han  i t s  v a l u e  a t  t h e  n e a r e s t  lowereenergy resonance 

f o r  the given J. 

This w a s  t h e  case f o r  a11 t h e  resonances of ground-state H29 HD 

and D2. One might specu la t e  that: t h e  energy of t h e  i n t e r n a l  

amplitude maximurn is t h e  Breit-Wigner resonance p o s i t i o n ,  Er 

Eq. (l), s i n c e  i t s  s h i f t  re la t ive  t o  T (max) i s  i n  t h e  c o r r e c t  

d i r e c t i o n ,  and i t  depends only on t h e  wave func t ion  i n  t h e  reg ion  

R R (J), max 

U ( E , J )  and Td(E,J) maxima, which d i f f e r e n c e  

Occasional ly  t h e  r e s i d u a l  background i n  

= 400-500 cm" (depending on n ,  - cf  e 

d 

40. 

i n  

d 

- 
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41. Th i s  may exp la in  t h e  discrepancy previous ly  poin ted  o u t  

between G. Herzberg and L.  L. Howe's (Can, J. Phys. - 37,  636 

(1959)) two de termina t ions  of t h e  energy of t h e  v = 14,  

J = 5 quasibound level of H2 

t h e  ca l cu la t ed  peak p o s i t i o n .  '' 
and t h e i r  disagreement wi th  

The two experimental  va lues  

were r e s p e c t i v e l y  0.5 J? below and 0.9 r above the  ca l cu la t ed  

va lue ,  where I" = 20 cmPf e 2 7  I f  a skewing of t h e  IA(E,5) peak 

were re spons ib l e  f o r  t h e s e  appa ren t ly  d i sco rdan t  observa t ions ,  

it would a l s o  exp la in  why t h e  observed l i n e s  "are s t i l l  q u i t e  

sharp", wh i l e  t h e  ca l cu la t ed  (see Table I he re ,  and Refs.(lG) 

and (27))  width i s  - ca. 20 cm'l . 

42. G. Herzberg and A .  Monfi ls ,  J. Mol. Spec t ry .  I 5 ,  482 (1960). 
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A new experimental  d i s s o c i a t i o n  energy, considered t o  b e  b e t t e r  

than  t h e  t h e o r e t i c a l  oneg was r e c e n t l y  r epor t ed  by G. Herzberg, 

J, Mol, Spec t ry ,  33, 147 (1990) e 

r e s u l t  w a s  ob ta ined  from t h e  r e a n a l y s i s  of h i s  d a t a  by 

W .  C ,  S twal ley,  Chem. Phys. L e t t ,  6, 241 (1990). 

R. J. L e  Roy and R. B .  Berns te in ,  J .  Chem. Phys. 4.9, 4322 

The improved experimental  d i s s o c i a t i o n  energy43 has  s ince shown 

t h a t  A'* i s  t h e  b e t t e r  of t h e  two p o s s i b l e  empi r i ca l  p o t e n t i a l  

c o r r e c t i o n s  suggested.  

The t h e o r e t i c a l  r e s u l t  is given i n  Table I and F ig .  3 (and i n  

Refs .  (16) and (2711, w h i l e  t h e  experimental  energy is obta ined  by 

combining t h e  level  energy r epor t ed  by Herzberg and Howe4l wi th  t h e  

d i s s o c i a t i o n  energy of Refs . (43) .  

R. E.  Roberts  ( p r i v a t e  communicatian, 1970) r e p o r t s  t h a t  removing 

t h i s  c o n t r i b u t i o n  w i l l  lower a l l  t h e  theo re t i ca l2b  H -I- H recombina- 

t i o n  rate cons t an t s  k(T) by some 10-20%, wh i l e  not  s i g n i f i c a n t l y  

a f f e c t i n g  t h e  p o s i t i o n  of t h e  p red ic t ed  k(T) maximum, 

a> J. H. Van Vleck, J .  Chem. Phys. i9 327 (1936); b) 

and G .  Karl, Can. J. Phys. - 4 4 ,  1469 (1966). 

R, J, L e  Roy, "Eigenvalues and Cer t a in  Expectat ion Values f o r  A l l  

Bound and Quasibound Levels of Ground-State (X 

Un ive r s i ty  of Wisconsin Theore t i ca l  Chemistry I n s t i t u t e  Report 

A s l i g h t  improvement over t h i s  

J .  D. P o l l  

1 4 -  
g C ) H 2 9  HD and D i f 9  

WE-TCI-383 (1991) 

R .  J .  L e  Roy, u n i v e r s i t y  of Wisconsin Theore t i ca l  Chemistry I n s t i t u t e  

Report WIS-TCI-429G (1971) 
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51 e 

52 e 

53. 

54.  

55.  

56,  

57 0 

This  casts cons iderable  doubt on t h e  long-range p o t e n t i a l  cons tan ts  

ob ta ined  from a p p l i c a t i o n s  o f  t h i s  method t o  EgH and HgD9" eo 

52 and and t o  OH. 

M. A ,  

273 (1967). 

Y. A .  Horsley and W .  e. Richards,  J. Chime Phys. 66, 4 1  (1969). 

R e f .  (30) a l s o  suggested t h a t  i f  t h e  energy g r i d  used i n  a resonance 

Byrne., W. G .  Richards,  and J, A ,  Horsley,  Mol. Phys. 12, 

s e a r c h  w a s  broader  than,  say r / 2 ,  t h e  resonance might be  overlooked. 

However t h i s  d i f f i c u l t y  i s  removed from bo th  t h e  T ~ ( E , J )  and 

IA(E , J )  approaches by simply counting t h e  wave func t ion  nodes in-  

s i d e  t h e  b a r r i e r  o r  by eva lua t ing  t h e  abso lu te  phase s h i f t .  

J. W. Cooley, Math. Computation - 15, 363 (1961); b) 

J. Chem. Phys. I 39, 1872 (1963) e 

J. K .  Cashion, 

It ,may be  shown a n a l y t i c a l l y  t h a t  BC(i) would g i v e  t h e  maximum 

p o s s i b l e  ampli tude growth ac ross  a r ec t angu la r  b a r r i e r .  

BC(i) and ( i i )  were examined i n  Ref e (30) ; t h e r e  appears  t o  b e  a 

misp r in t  t h e r e  as they d i scuss  having a node - and zero s l o p e  a t  

R (J) o r  R (E) ,  which would y i e l d  t h e  t r i v i a l  s o l u t i o n  Y (R) E 0 
max 3 E9J 

everywhere. 

This  r e f e r s  t o  t h e  func t ion  B i  d i scussed  i n  9 10.4 of Ref  (58) e 

One needs only i n i t i a l  va lues  of t h i s  func t ion  ve ry  near  t h e  tu rn ing  I 

p o i n t  (where its argument i s  q u i t e  sma l l ) ,  and they  are r e a d i l y  

obtained by summing t h e  f i r s t  few terms i n  t h e  ascending power 

series expansion f o r  B i  (Eq. (10,4,3) i n  Ref (58)) This  c r i t e r i o n  

w a s  chosen because i t  g ives  t h e  maximum p o s s i b l e  ampli tude growth 

ac ross  a r i g h t  t r i a n g u l a r  b a r r i e r  
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62. 

63. 

64. 

65 

66. 

M e  Abramowitz and I. A. Stegun, Handbook of  Mathematical Funct ions,  

N a t l .  Bur. S td .  ( U . S . )  Appl. Math. Ser .  - 55 (U.S. Dept. of Commerce, 

1964; a l s o  Dover Pub l i ca t ions  Inc., New York, 1965). 

Within t h e  f i r s t - o r d e r  WKB approximation t h i s  should correspond 

e x a c t l y  t o  BC(i i i1 .  

This  relative order ing  of t h e  r e s u l t s  f o r  BC(i) and ( i i )  was  found 

i n  Ref. (30) f o r  t h e  two broad resonances considered t h e r e ;  however 

i t  is i n t e r e s t i n g  he re  t o  no te  i t s  g e n e r a l i t y  and t h e  r e l a t i o n  

between t h e  s h i f t  and t h e  resonance width e 

The ana lyses  of t h e s e  re la t ive s h i f t s  omit ted t h e  sharp resonances 

s i n c e  t h e  e f f e c t s  t h e r e  are qbscured by t h e  Pimited p r e c i s i o n  of 

t h e  c a l c u l a t i o n  e 

See, e.g. ,  (v , J )  = (9,19) and (14,5) i n  Tables  I and 111. 

A. U. Hazi and H. S.  Taylor,  Phys. Rev. - A l ,  1109 (1970). 

a )  

and A. U. Hazi, "Calculat ion of Energies  and Widths of Compound- 

S t a t e  Resonances i n  E las t ic  Sca t t e r ing :  S t a b i l i z a t i o n  Method'' 

( t o  b e  publ i shed) ;  c )  A ,  U. Hazi  and M. F. F e l s ,  "Computation of 

Resonance Parameters For  Elas t ic  Sca t t e r ing"  ( t o  be  publ ished)  e 

See § l O . E  of Ref. (58) .  

The a l t e r n a t e  approach would i n v e r t  Eqs. (AlO) and eva lua te  t h e  sum 

i n  Eq.  (A8) s t a r t i n g  a t  m = 1. However, s i n c e  Z J (and o f t e n  

2 

r ecu r s ion  r e l a t i o n s ,  y i e l d i n g  completely spur ious  va lues  of C(2m) 

and S(2m-1) f o r  m as low as 5. 

W. H. Miller, Chem. Phys. L e t t .  - 4,  627 (1970); b )  M. F. F e l s  

* 
>> J), t h i s  causes  a s e r i o u s  l o s s  of p r e c i s i o n  when us ing  t h e s e  * 
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6 7 .  The r e s i d u a l  d i f f e r e n c e s  ranged from < 0.004% of A(Z+$J) f o r  

J I < 10, t o  1.2% f o r  J = 30, probably r e f l e c t i n g  accumulated e r r o r s  

i n  t h e  numerical  quadra tures .  

This  program4' w a s  coded i n  F o r t r a n  V and r u n  on a Univac 1108 

computer e 

68. 

69. The only s e r i o u s  exceptior,  i s  t h e  v = 10, J = 17 resonance, f o r  

-1 which an  apparent ly  erroneous width of 376 cm w a s  r epor t ed  

previously16 ( c f .  - Eq. ( 5 )  The worst  d i sagree-  

ment f o r  a l l  t h e  o the r  widths r epor t ed  w a s  12%, and t h e  d i f f e r s n c e s  

were usua l ly  w i t h i n  t h e  u n c e r t a i n t i e s  r epor t ed  i n  Ref. (16) .  

y i e lded  92.9 ern-')* 
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FIGURE LEGENDS 

Fig.  1 C o l l i s i o n a l  t i m e  de lays  T ~ ( E , J )  [see] f o r  atomic H + H c o l l i s i o n s  

governed by t h e  s i n g l e t  ground-state  H p o t e n t i a l  curve. The ver- 2 

t i ca l  dashed l ines  denote  t h e  ene rg ie s  of t h e  b a r r i e r  maxima f o r  

t h e  d i f f e r e n t  J. 

of nodes in t h e  r a d i a l  wave func t ion  f o r  i n t e r n u c l e a r  s epa ra t ions  

smaller than  t h a t  corresponding t o  t h e  p o t e n t i a l  maximum. 

The v l a b e l i n g  of t h e  peaks i n d i c a t e s  t h e  number 

Fig.  2 C o l l i s i o n a l  t ime de lays  T ~ ( E , J )  [sec] f o r  D f D c o l l i s i o n s ;  as 

i n  F ig .  1, 

Fig .  3 Comparison of T ~ ( E , J )  func t ions  ( s o l i d  curves ,  l e f t  o r d i n a t e  

s c a l e )  wi th  t h e  IA'n) (E,J) func t ions  ( r i g h t  o r d i n a t e  scale) f o r  

n = 1 (upper dashed curves)  and n = 4 (lower dashed curves) ,  f o r  

H 4- H c o l l i s i o n s .  

t i o n  of t h e  r e s p e c t i v e  maxima; as i n  P ig .  l. 

The ver t ical  arrows i n d i c a t e  t h e  p r e c i s e  loca-  

- F i e  Comparison of T ~ ( E , J )  and I A ( E , J )  f unc t ions  f o r  H 4- H c o l l i s i o n s ;  

as i n  F ig ,  3 ,  

Fig.  5 Lower: comparison of t h e  ILBN ( s o l i d  curve; w i th  t h i s  a b s c i s s a  

i t  is t h e  same f o r  t h e  d i f f e r e n t  i so topes )  wi th  t h e  p red ic t ed  LCDOS 

(dashed curves)  f o r  ground-state  H HD and D2- Upper: t h e ' i ? t r o r  

term AE [E(LBM,J) - E(LCD,J)] vs J(J4-1) a 

29 
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ABSTRACT 

The eigenvalues ,  and t h e  expec ta t ion  va lues  of R,  R2,  R-2 and 

k i n e t i c  energy have been ca l cu la t ed  f o r  a l l  v i b r a t i o n a l - r o t a t i o n a l  

levels of ground-state  (X 

a d i a b a t i c  p o t e n t i a l  of Kolos and Wolniewicz. 

1 +  
g 

C ) H2, HD and D2, from t h e  r e l a t i v i s t i c p  

The widths I' are a l s o  

given f o r  a l l  quasibound levels f o r  which 0.05 < I' < 100 cm-'. -. 
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I ,  INTRODUCTION 

A d e t a i l e d  knowledge of t h e  p r o p e r t i e s  of t h e  v i b r a t i o n a l - r o t a t i o n a l  

level s p e c t r a  of d ia tomic  molecules i s  r equ i r ed  

s tanding  of many s imple  chemical processes .  For  example, t h e  computed 

eigenvalues  of t h e  bound levels of ground-state  H were used by McElwain 

and P r i t c h a r d  i n  t h e o r e t i c a l  s t u d i e s  of  t h e  d i s s o c i a t i o n  of a diatomic 

g a s ,  Another case is  t h e  o r b i t i n g  resonance theory of atomic recom- 

b i n a t i o n ,  which r e q u i r e s  a knowledge of t h e  energy, width,  and average 

i n t e r n u c l e a r  d i s t a n c e  of each of t h e  quasibound levels con t r ibu t ing  

t o  t h e  recombination.2 

i n  r e l a t i o n  t o  p o s s i b l e  spec t roscop ic  and atomic s c a t t e r i n g  experiments.  

f o r  a proper under- 

2 

1 

This  information i s  a l s o  of p r e d i c t i v e  i n t e r e s t  

3 

The KoYos and Wolniewicz (KW) c a l c u l a t i o n 4  of t h e  i n t e r n u c l e a r  

p o t e n t i a l  f o r  ground-state  molecular hydrogen aroused cons iderable  

i n t e r e s t ,  as it  y ie lded  t h e  f i r s t  ab i n i t i o  p o t e n t i a l  t o  achieve  

"spectroscopic"  accuracy,  Their  work w a s  s h o r t l y  followed by a number 

of independent computations of t h e  p o t e n t i a l ' s  v i b r a t i o n a l  e igenvalue  

spectrum, 5-9 which showed t h a t  t h e  fu l ly-cor rec ted  re la t ivis t ic ,  a d i a b a t i c  

p o t e n t i a l  

e x i s t i n g  experimental  value," This  r e su l t  w a s  r a t h e r  u n s e t t l i n g  as i t  

appeared t o  c o n t r a d i c t  t h e  v a r i a t i o n a l  p r i n c i p l e ' s  a s s e r t i o n  t h a t  a cal- 

c u l a t i o n  such as t h a t  of KW must g i v e  a lower bound t o  t h e  ground-state  

d i s s o c i a t i o n  energy. However t h i s  discrepancy has  s i n c e  been reso lved  

by improved measurements, and t h e  present  b e s t  experimental  d i s s o c i a t i o n  

4 -1 had a d i s s o c i a t i o n  energy some 4 cm g r e a t e r  than  t h e  b e s t  

4 

- 1- 



8, - 946 

energy, obtained from Stwalley v s l l  r e a n a l y s i s  of Herzberg 's12 new d a t a ,  

is 0 . 7  (9 I 0 - 5 )  cm"l g r e a t e r  than  t h e  t h e o r e t i c a l  va lue .  
12  

8 Waech and Berns te in  prev ious ly  c a l c u l a t e d  t h e  ene rg ie s  of a l l  t h e  

4 v i b r a t i o n a l - r o t a t i o n a l  levels of ground-state  H2 from t h e  KW p o t e n t i a l .  

However they only used t h e  clamped n u c l e i  (Born-Oppenheimer) p o t e n t i a l ,  

and omit ted both t h e  d iagonal  c o r r e c t i o n  f o r  nuc lea r  motion ( a d i a b a t i c  

co r rec t ion )  and t h e  re la t ivis t ic  c o r r e c t i o n ,  I n  a d d i t i o n ,  they  ( incor-  

r e c t l y )  used t h e  reduced mass of t h e  atoms r a t h e r  than  t h a t  of t h e  

n u c l e i e 9  Because of t h e  g r e a t  d e a l  of i n t e r e s t  i n  t h i s  system,13 it  

seems t imely  t o  conduct a more thorough s tudy  of t h e  p r o p e r t i e s  of t h e  

bound and quasibound levels of t h e  hydrogen i so topes ,  us ing  t h e  f u l l y  

cor rec ted  KW p o t e n t i a l  and t h e  c o r r e c t  (nuc lear )  reduced mass. The 

eigenvalues ,  and t h e  expec ta t ion  values of R, R 2 Rm2 and k i n e t i c  ener- 

gy 

and D2 are presented  below. 

conjunct ion w i t h  a recent s tudy  of p r o p e r t i e s  of t h e  quasibound levels. 

f o r  a l l  t h e  bound and quasibound levels of ground-state  H 2 )  HD 

These r e su l t s  should b e  considered i n  

3 

I T ,  METHODS OF CALCULATION 

The i n t e r p o l a t i o n  and e x t r a p o l a t i o n  over t h e  computed4 va lues  of 

t h e  clamped n u c l e i  p o t e n t i a l  and i t s  r e l a t i v i s t i c  and a d i a b a t i c  correc-  

t i o n s  t o  o b t a i n  t h e  smoothed p o t e n t i a l  used i n  t h e  present  c a l c u l a t i o n s ,  

is  descr ibed  i n  s e c t i o n s  I I I B  and C of Ref. (9 ) .  

t o  b e  noted i s  t h a t  t h e  a d i a b a t i c  c o r r e c t i o n  i s  sca l ed  by t h e  i n v e r s e  

of t h e  nuc lear  reduced mass, s o  t h a t  t h e  t o t a l  non-cent r i fuga l  p o t e n t i a l  

One a d d i t i o n a l  p o i n t  

-2- 
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is s l i g h t l y  d i f f e r e n t  f o r  d i f f e r e n t  i so topes .  

equat ion  €or  t h e  bound states w a s  solved i n  t h e  manner descr ibed  i n  

s e c t i o n  I I I A  of  Ref. (9) ;  t h e  only d i f f e r e n c e  is  t h a t  t h e  p re sen t  calcu-  

The r a d i a l  Schrgdinger 

2 l a t i o n s  consider  J P. 0 levels, s o  a t e r m  J ( J C l ) / z  

e f f e c t i v e  poten t ia l . '  

i s  added t o  t h e  sca l ed  

Up t o  4000 mesh p o i n t s  were used i n  t h e  numerical  

i n t e g r a t i o n ,  s t a r t i n g  a t  an  inne r  boundary of 0 .3  au and using increments 

of 0.0070, 0.0056 and 0.0048 au f o r  H2, HD and D r e s p e c t i v e l y .  2 

The only  phys ica l  cons t an t s  r equ i r ed  f o r  t h e  eigenvalue' and 

expec ta t ion  v a l u e  computations are t h e  masses of t h e  atomic n u c l e i  and 

of t h e  e l e c t r o n ,  a l l  i n  amu(12C=12), and the  energy conversion f a c t o r  

1 au = 219474.62 an"'. The masses used, taken  from Cohen and DuMond, 1 4  

are g iven  i n  Table  I .  The e f f e c t  of small e r r o r s  i n  these  masses on t h e  

computed level energ ies  would vary as t h e  expec ta t ion  va lue  of t h e  

15 k i n e t i c  energy, as i s  shown by Eq. (2) of Ref.  (9) .  

Quasibound levels wi th  very s m a l l  wid ths ,  i .e.  I' 2 0.05 c m - l ,  

were loca ted  us ing  t h e  Airy-function boundary cond i t ion  method descr ibed  

i n  R e f .  (39. 

rier maxima, t h e  level  energ ies  were placed a t  t h e  peaks of t h e  i n t e r n a l  

ampli tude func t ion  ( see  Ref. ( 3 ) ) ,  and hence should correspond t o  t h e  

spec t roscop ica l ly  observed level p o s i t i o n s  e The quasibound widths  r 

For t h e  broad quasibounds ly ing  near  t h e  c e n t r i f u g a l  bar-  

on t h e  o the r  hand, were c a l c u l a t e d  from t h e  h e i g h t  of t h e  

12 le, TABLE I: Elec t ron ,  proton,  and deuteron masses i n  amu( C = l 2 ) .  

Md m M 
e P 

5 4859 ~ x E O - ~  1,00927663 2.0135560 

-3- 
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3,17 resonance peaks i n  t h e  c o l l i s i o n a l  time-delay func t ions ,  T ~ ( E , J )  : 

The expec ta t ion  va lue  { of a quan t i ty  f (R)  i s  

where Y (R) is t h e  computed exac t  r a d i a l  e igenfunct ion .  For t h e  

t r u l y  bound levels ly ing  below t h e  d i s s o c i a t i o n  l i m i t ,  R+ = 

whi le  f o r  t h e  quasibound levels Eying behind the c e n t r i f u g a l  b a r r i e r ,  

(J) R+ Rmax 

The expec ta t ion  values f o r  t h e  quasibound levels were eva lua ted  a t  

t h e  level  ene rg ie s  y i e lded  by t h e  Airy-function boundary condi t ion  

methode3 This means t h a t  they  are not  r epor t ed  f o r  levels 

ly ing  above t h e  c e n t r i f u g a l  b a r r i e r  maxima. More s e r i o u s l y ,  i t  impl ies  

t h a t  t h e  expec ta t ion  va lues  f o r  t h e  broad levels may no t  p r e c i s e l y  

correspond t o  t h e  r epor t ed  e igenvalues ,  s i n c e  t h e  l a t te r  were def ined  

by t h e  maxima i n  t h e  i n t e r n a l  amplitude func t ion .  However, re la t ive 

t o  t h e  width of t h e s e  levels ,  such i n c o n s i s t e n c i e s  are of n e g l i g i b l e  

importance e 

v,J 
18 , 

- t h e  p o s i t i o n  of t h e  b a r r i e r  maximum f o r  t h e  g iven  J .  

3 

Annotated FORTRAN l i s t i n g s  of t h e  computer programs used i n  t h e  

present  c a l c u l a t i o n s  are a v a i l a b l e  i n  R e f . ( l 9 ) .  

e igenvalue program incorpora t e s  a number of improvements over t h e  

Cooley-Cashion program on which i t  i s  based,20 and is q u i t e  e f f i c i e n t ,  

The bound-state 

-4- 
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I 

For example, t h e  c a l c u l a t i o n  of t h e  e igenvalues  and expec ta t ion  values 

f o r  t h e  348 levels of H 

Univac 1108 computer. 

r equ i r ed  s l i g h t l y  less than  2 minutes on a 2 

111. RESULTS AND DISCUSSION 

Tables  TI-XVI g ive  t h e  eigenvalues ,  and t h e  expec ta t ion  va lues  of 
2 

1 4 -  

k i n e t i c  energy, R, R and R-2 f o r  a l l  t h e  bound and quasibound levels 

of t h e  ground (X Cg) states of H2 HD and D ca l cu la t ed  from t h e  

r e l a t i v i s t i c - a d i a b a t i c  KoZos and Wolniewiz p o t e n t i a l .  Energies  are 
-1 16 

given i n  cm and lengths  i n  au ( l . a u  = 0.52917715 2 ; t h e  ex- 

2 
4 

p e c t a t i o n  va lues  of R 2 and Rm2 are given as (R2)' and { R-2} -% t o  

s i m p l i f y  comparisons. I n  t h e  eigenvalue t a b l e s ,  t h e  widths  of a l l  

quasibound levels f o r  which 0.05 < I' 5 100 cmcl are given i n  paren- 

theses ;  levels f o r  which r 100 cm-' are omit ted.  The h e i g h t s  and 

p o s i t i o n s  of t h e  c e n t r i f u g a l  barrier maxima corresponding t o  t h e  

d i f f e r e n t  J va lues  are l i s t e d  under U(max) ( i n  t h e  eigenvalue t a b l e s )  

and R(max) 

The s o l i d  l i n e  a c r o s s  each of t h e  expectation-value t a b l e s  s e p a r a t e s  

t h e  r e s u l t s  f o r  bound levels from those  f o r  t h e  quasibound; t h e  

f u n c t i o n a l  dependence of t h e s e  q u a n t i t i e s  on v and J is  c l e a r l y  con- 

t inuous  ac ross  t h e s e  a r t i f i c i a l  boundaries .  

-., 

( i n  t h e  (R), (R2}' and ( R -2)-' t a b l e s )  respec t ive ly , .  

The r e s u l t s  presented  i n  Tables  IT-XVI w e r e  obtained from t h e  

ab i n i t i o  p o t e n t i a l  a lone9  without  any empi r i ca l  c o r r e c t i o n s ,  

-5 - 
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HoweverS i n  Ref. (9) i t  w a s  shown t h a t  even a f t e r  tak ing  t h e  t h e o r e t i c a l  

non-adiabat ic  c o r r e c t i o n s  i n t o  account ,  t h e  KW p o t e n t i a l  s t i l l  requi red  

small adjustments  i n  order  t o  b r ing  t h e  c a l c u l a t e d  v i b r a t i o n a l  eigen- 

va lues  i n t o  agreement wi th  experiment.  The recent improved measurements 

of t h e  molecular d i s s o c i a t i o n  energy have s i n c e  shown t h a t  t h e  b e t t e r  of 

t h e  two p o s s i b l e  der ived  co r rec t ions9  is  t h a t  l abe led  A"-  Although A" 

is not  t h e  f i n a l  word (see, e .g . ,  t h e  d i scuss ion  i n  s e c t i o n  I V  of Ref e ( 3 ) ) ,  

it  is a f a i r  measure of t h e  d i r e c t i o n  and magnitude of t h e  small e r r o r s  

i n  t h e  ab i n i t i o  ~ o t e n t i a l . ~  The e f f e c t  on t h e  eigenvalues  of Table I1 

of adding A" t o  t h e  KW p o t e n t i a l  is  seen i n  Table  XVII; c l e a r l y  t h e  

deeper e igenvalues  are unperturbed, wh i l e  t h e  h igher  ones are s h i f t e d  deepex 

by as much as a few cm However, t h e  d e r i v a t i o n  of A'' depends on an  

assumed knowledge of t h e  non-adiabat ic  e f f e c t s ,  2E and t h e  l a t te r  may not  

r e a d i l y  b e  incorpora ted  i n t o  t h e  expec ta t ion  values. Therefore ,  t h e  

effects of small r e s i d u a l  e r r o r s  i n  t h e  ab  i n i t i o  p o t e n t i a l  are no t  

considered f u r t h e r .  

-1 
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55 (3.96'7); c )  A,  C, Al l i son ,  Chem. Phys. L e t t .  - 3,  371 (1969); 

d )  M. E. Gersh and R.  B, Berns te in ,  Chem. Phys. L e t t .  k9 2 2 1  (1969). 

E .  R. Cohen and J, W. DuMond, Rev. Mod. Phys. - 3 7 ,  537 (1965). 

An improved va lue  of t h e  e l e c t r o n  mass has  been reportedL6 which is  

0.73 x lo-'% 
t h i s  imputes i n  r epor t ed  eigenvalues  are n e g l i g i b l e ,  having a maxi- 

mum of 0.075 cm 

B .  N .  Taylor ,  W e  H. Parker  and D. N. Langenberg, Rev. Mod. Phys. s, 
375 (1969). 

Comparisons of several cr i ter ia  f o r  determining t h e  quasibound level 

ene rg ie s  and of d i v e r s  means of e s t ima t ing  t h e i r  wid ths  are presented  

i n  Ref . (3) .  The time-delay func t ion  Td(E,d) and a means of com- 

pu t ing  i t  are a l s o  descr ibed  t h e r e .  

Of course,  i n  r e a l i t y  t h e  quadra tures  need only be performed out  t o  

a f i n i t e  R which is  s u f f i c i e n t l y  l a r g e  t h a t  Y' (R) is  n e g l i g i b l e  

f o r  R > R+. 

R e  J. L e  Roy, Univers i ty  of Wisconsin Theore t i ca l  Chemistry I n s t i t u t e  

r e p o r t  WIS-TCL-429G ( l 9 7 l ) ,  

a) J. W e  Cooley, Math. Computation - 15, 363 (1961); b )  J . K .  Cashion, 

J. Chem. Phys, 2, 1872 (1963); c )  R. N. Zare and J. K. Cashion, 

Un ive r s i ty  of C a l i f o r n i a  Radia t ion  Laboratory r e p o r t  UCRL-10881 (1963) 

It is  be l i eved  t h a t  t h e  Ref . (9)  estimates of t h e  non-adiabat ic  

c o r r e c t i o n s  t o  t h e  eigenvalues  are s l i g h t l y  l a r g e ,  which impl ies  

t h a t  A" underest imates  t h e  necessary co r rec t ions  t o  t h e  KW p o t e n t i a l .  

smaller than  t h e  va lue  i n  Table I. However4 t h e  e r r o r s  

-1 9 
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9 .  PERMEABILITY OF ONE-DIMENSIONAL POTENTIAL BARRIERS 

A l l  of t h e  techniques  and r e s u l t s  d i scussed  above have b a s i c a l l y  

been concerned wi th  t h e  exac t  d e s c r i p t i o n  (wi th in  t h e  framework of 

t h e  Born-Oppenheimer o r  a d i a b a t i c  approximations) of t h e  re la t ive 

nuc lea r  motiorr of  p a i r s  of i s o l a t e d  atoms. On t h e  o the r  hand, u s e f u l ,  

though approximate r e s u l t s  f o r  much more complicated systems may same- 

t i m e s  b e  obta ined  by assuming t h a t  they  too  may be e f f e c t i v e l y  reduced 

t o  one mathematical  dimension, 

chapter .  

of t h e  Faraday Soc ie ty ,  Volume 66, pp. 2997-3006 (1970). 

This  is  t h e  framework of t h e  p re sen t  

The work presented below w i l l  be  publ ished i n  t h e  Transac t ions  
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A numerical method is described for computing the exact permeability (tunnelling probability) 

for any one-dimensional potential barrier. It is used to test the validity of the widely-used approxi- 
mate formulae for the tunnelling factors for truncated parabolic barriers. The method is atso used 
to calculate tunnelling factors for the H i  Mz exchange reaction, using tile theoretical potential 
surface of Shavitt, Stevens, Minn and Karplus, and it i s  shown that standard Eckatt angl parabolic 
barrier approximations can yield considerable error. 

Evaluatioli of the probability of transmission for a particle impinging oqa potential 
barrier has long beeti an important problem in the theoretical treatment bf chemical 
reactioit rates. The early use of tuiinelling corrections is discussed by Glasstone, 
Laidler and Eyring.' Their usefulness in  interpreting the results of proton transfer 
reactions has bcen reviewed by Caldin,2 and their application to the hydrogen exchange 
reactions is discussed by J ~ h n s t o n . ~  

While the potential barrier i n  a chemical reaction is in general ntulti-dinlensional, 
a widely-used approximation has been to corisider the reaction as motipn alorig a 
one-diniensional (I-Dim) " reaction coordinate " which is  orthogonal t@ all other 
moJcs of motion of thc internctiiig species. I n  this approxinration, qstimates of 
b;trikr transmission ratcs have usually bcerl obtaincd after approxinlatipjg the exact 
potcntinl by a model I-Din1 barrier of one of two analytic forn1s frJr \"which exact 
annIJ$ic tunnelling probabilities arc known : an Eckart barrier,' or a11  infiriite parabolic 
barrier.' A n  exact tunnelling probability exprecsori has also bcoi derived for a 
third poteiitiaIforni, the infir~itedoitb1eanI;armortic barrier, V(x) = V,[l -(.u/a-a/.42] ; 
hovckc'r. this rcwlt h a \  nol yet becn npplicd to chcinical problct~~s. Altllough 
t f w  rc:.;ult fur tikc pnr;tbcdic po tc i iM  i s  for a n  infhitc Iiiirricr, it Iwe  bccn widcly tlscd 
- for trutwted p+\rabol:tq,2 pi*obably because of the convciticiit iiiiAytic expression 

obtained for the tunnelling factor in thc high-temperature limit.' The Eckart 
p~ ten t i a l ,~  on the other hand, is fiiiitc, and the potential and its first derivative are 
everywhere continuous ; however, while its exact transmission probability is known 
analytically, the tunnelhg factomannot be obtained in closed forni.: 

__ 

* Present address: Dcpt. of physics, University of Toronto. Toronto 181. Ontarit.. Canada. 
tpresent address : IGtitltt fur Fhysikalisclie Chciaie. Universitlt Gottingeti, 34 Gatlingen, 

Biirgerstrasse 50, West Germany. 

:A table of &kart tunneIIing factors for a wide range of potential parameter values and reduced 
temperatures is given in ref. (3), p. 44. Johnston (private communication, 1969) computed this table 
using the correct transmission probability expression and not his eqn (2-221, in which the lasE term . 
should be x2/4, not 2x2/t6. 

I_ 
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Despite the coilvcnience of using the analytic or tabulatcd rcsutts for the two 
main model bat riers mentioned above, these potentials will rarely accurately represent 
a rcasonable I-Dim cut through an actual potential surface. Furthermore, the 
analytic tunnelling probabilities can not take account of the change in the asymptotic 
reduced mass between reagents and products which arises in  many chcmical situafions. 
An additional probleni associated with the use of Bell's formulae for parabolic 
barriers is the unknown effect of truncating the barrier at a finite bight  011 the 

. transntission probability, and hencc on his approuimntc expressions for the tunnelling 
factor. 

In the next section, a simple numerical procedure is presented foq.determining 
. exact transmissian coefficients for any I-Dim potential barrier. This approach is 
tested by comparing its predictions to the exact analytic resulBfor an Eckart ba r r i e~ .~  
The numerical method is then applied to truncated parabolic barriers to examine the 
validity of Bell's approximations. Finally, the usefulness of the exact I- 
is demonstrated by applying it to the calculation of tunnelling factors 
exchange reaction. 

S C A T T E R I N G  B Y  A O N E - D I M E N S I O N A L  BARRIER 

EXACT BARRIER P A S S A G E  P R O B A B I L I T Y  
Many elementary quantum mechanics texts derive the exact transmission proba- 

--- bility for a rectangular barrier,8 and the present treatment is qualitatively the same.* 
The Schrodinger equation describing -FDiin potential scattering may be written ih- 
the dimensionless form 

where 

and 

Til general, the energy and length scaling factors Vo and a may be chosen completely 
arbitrarily ; however, it is usually convenient to associate them with the barrier 
and-width. In the present discussion, the coordinate x along the r ~ c ~ o ~  path is 

d 2 W / d P  + ByEE - Wltlrt~) = 0, 

y = x/u, E = EJVO, F(y) = V(X)/VO, 

(1) 

By = 2p Vou2/k2 = 20.746 59y[a.m.u.] Vo[kcal/mol] 

- . I .  

Fro. 1 .-Schematic potential barrier, 
)I 

defined such that x'v - o corresponds to reagents and xrr  f co to products, The 
potential V(x) is everywhere finite and approaches constant values in the limits 
x3: & 00 (see fig, I). E is ihe translational energy of the colliding particles, In 

*A. Kuppermann has pointed out that a method similar to that described here WBS ~ ~ j ~ ~ y  
presented and used in a study of the Shottky effect.g 
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general, the effective reduced mass p may vary along the reaction coordinate, and the 
asymptotic reduced mass of the reagents may differ from that of the products.*' 
However, this may readily be taken account of by introducing a variable mass p = 
p(y)  into eqn ( I ) ,  or aIternativeJy by scaling tlie reaction coordina 
while holding p fixed.; 

- and -..-- hence p is assumed to be a constant in the rest of the derivation. 
For '' reagents ", the solution of eqn (1) may be asymptotically 

linear combination of plane waves incident on and reflected from t 
for y r  --OO : 

where a- = (&[E- V( - oo)])*. Similarly, particles which tunnel pa t  the barrier 
to form products may be described asymptotically by B plane wave rnqting away 
from the barrier, i s . ,  for y" f 00 : 

, 

When this question arose here the latter 

$(y) = AI exp (icl-y) + AR exp (- itcy), (2) 

- -  $(Y) = AT CXP ( i w 9 ,  (3) 

where a+ = {B,[E- ?(-I- @)I)*. The probability of barrier passage is 'the ratio of 
the transmitted to the incident flux : 

where u+ and v- are respectively the asyinptotic velocities of products (+) a@ reagents 
(-). For fixed p, v+[v- = a+/a-, and hence 

To faciiitate computation of K(E) it is convenient to expand #(y) ig terms of its 
real and imaginary parrs : 

Comparing this with eqn (3) shows that for products, at y z  f a  : 
VKY) = #I(Y)+i#Z(Y), 

(51 
@l(Y) = AT cos (06Y), 
r b Z ( Y )  = AT sin (a4-Y). 

Starting from this boundary condition with an arbitrary choice of AT (most con- 
veniently, AT = l), the two independent soiutions and #&) may be n u ~ e ~ i c ~ ~ l ~  
integrated through thc barrier to the reagent boundary condition at yz - ao. 
they may be decomposed into 

cbI(y) = Cl cos (a-y) -I- D1 sin (a-y), 

@&) = Cz cos (a-7) -t- Dz sin ( a ~ ) .  (61 

Comparing eqn (2) and (6), values of AI and AR are obtained in terms of vaiues of 
the solution functions 
Substituting them into eqn (4) yields 

and &(y) at adjacent integration mesh points yo. 

K ( E )  = 4(a*/a-) [%(Y2 -Yl) l  1 A T  1 2 { ~ # 1 ( ~ 1 ) 1 2  fk#1(Y2)12 +[42fuI)l2 
[#2(~21~2 - 2r4, (A  )$ (.YJ +  MY^ M ~ ( Y ~ ) I  ws ~U-(Y  a - Y 11 -+ 
ash, (v, ) 4 2 ( ~ 2 )  - 4, ( Y ~ ) ~ ~ ~ L V ,  11 si 11 EKAY, - Y I 11) - t . 

This is the dcvircd result. The exact numerical integration of 
application of the boundary conditions ore discussed below. 
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The above method was tested by applying it to a symmetric h k a r t  barrier, 
y(y) = l/cosli2(j~), for which thc exact # ( E )  function is  knowts anal 
barricrs with 0, values ranging from 2 to 200, it was found that 
numerical integration yieldcd K(E) accurate lo within I x IO--$, for 
and 2.0. This conlirms the validity of the present approach. 

INTEGRATION OF EQN ( 1 )  A N D  APPLICATION OF B O U N D A R Y  CONDITIONS 

The Numerov method ' i s  a very efficient technique for the numerical integration 
of a homogeneous linear second-order differential equation without fir 

, such as eqn ( l ) . I 3  One restriction on its use is that it assumes that 
function V(y)  is smooth, since when it is not an inordinately small 
integration is required to yield reasonable accuracy. in the latter 
starting technique such as the Runge-Kutta-Gill (RKG) method l4 
priate. The RKG procedure requires more arithmetic, and one 
evaluation per integration step than does the Numerov method. 
calculating the solution at a given point the latter utiIizes the sol 
previous mesh points, while the former requires the solution and its first derivative 
onIy at the adjacent previous point. Thus, if RKG is used and the integration mesh 
chosen so that mesh points lie at any potential slope discontinuiti 
integration is in no way affected by the existence of such disconti 
present work, the RKG procedure was used in the calculations for tru 
barriers, as they have discontinuous first derivatives at y = f l  (see. 
Numerov method was used in all other cases. 

For either algorithm the accuracy of the integration improves witk decreasing 
increment Ay until a lower bound is reached beyond which the theoretical improve- 
ment in the numerical accuracy is exceeded by the accumulated machine round-off 

um increment of integration as a function of particle and barrier 

Ay = Axla = FJ(Ry)*, 
where the height of the barrier is used as V, in the calculation of B9. The value of 
the numerical constant F depends on the integration algorithm and the number of 
significant digits of machine accuracy. On the 8-digit computer used in the present 
work, F = 0.18 was appropriate for Numerov integration, and F = 0.07 for the 
RKC algorithm. 

For potentials with a finite range, such as truncated parabolic barriers, application 
of the boundary conditions eqii (2) and (3) presents no difficulties. On the other 
hand, realistic potentials which reach their asymptotic values only in tho limits 
yz & 00 can only be integrated over a finite interval, and hence the exact boundary 
conditions are never achieved. Xn the present wqrk, the ends of this finite 
y- and y+, were defined as the smallest values of I y I for which the first-ord 
convergence criterion (see, e.g., pp. 112-1 I5 of' ref. (84) was smaller than 8 chosen 
critical value. Thus, they are the solutions of 

where a(y) = {BJE - Tf(y)])* and Z is the chosen convergence criterion. h 
was found here that 2 = 1 . 0 ~  of the 
exact analytic barrier passage probabilities for Eckart hrriers of ~ f f ~ ~ ~ t  sizes. 

ing 
the appendix to ref. (15). 

yielded values of rc@) within 1 x 

A Fortran listing of the subroutine used to integrate eqn (1) to yield se( 
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THE T U N N E L L I N G  PACTOR F(T)  

barrier-crossing rate for particles with a Boltzniann distribution of i 
energies relative to the barrier. 
may be written as 

The tunnelling factor is the ratio of the quantum mechanical to the classical 

In reduced units analogous to those 

'where 'i' = kT/Vo, and V,, is, the barrier height. After obtaining x(E) values over 
range of energies by the metlg presented above, eqn (8) may be integrated 
This quantity is in effect an observable and is the point of compari 
theoretical and experimental estimates of tunnelling. 

APPLICATION TO PARABOLIC BARRIERS 

The potential form which appears to have been most widely used to account for 
tunnelling in chemical processes is the truncated parabola : - 

for - l ,<y<l  
(91 

Ydy) 5 1-yZ 
= o  for Ivl  <I ,  

where particles may impinge on the barrier with energies &O. In l#e present 
discussion, the energy and length scaling factors V, and a used in By alqpys signify 
the barrier height, and the half-width at its base. It is apparent that in $&s case the 
transmission probability function rc(E) is completely defined by the c$wponding 
value for: By, since eqn (1) is precisely the same for all barriers with diffvrent heights 
and widths, but the same By. 

It will be convenient to replace By by the previously used 2* ' and equivalent 
reduced parameter 
/I = x(By)* = 14.309 46 (p[a.m.~.]V~[kcal/mo~)*a[~] = 2 1 9 7 . S ~ 4 ~ ~ ~ k c a l / m o l ~ / v ~ m - 1 ~  
where v is the characteristic frequency of the harmonic oscillator potential obtained 
on inverting the parabolic barrier." The reduced temperature Tused here is equiva- 

While consideration of eqn (1) suggests that By is a more " nu$ural" parameter, previous work 
with truncated parabolas 2* 'I used p, which is a natural parameter in Bell's ' approximate analytic 
tunnelling factor expressions. 

lent to the previously used 2. reduced variable a = 1 / F  In the following discwsioa, 
particular combinations of temperature, and particle mass and barrier size are charao- 
terized by values of T and 8. For given choices of these quantities, exact values of 
rc(/I,E) and l?(&'i') were calculated by the numerical metlhod presented abo 

for particlcs impinging on an injinife para- 
bolic barrier : @> = I -yZ ,  whcrc - co < y <  + 00, is 

where E and 8 are as defined above, and E may range to rt co. A widely used approxi- 
mation has bcen to assume that thc transmission coefficient for a jinire para'bolic 
barrier may be accurately represented by qn (IO). This question is cxamined in 
fig. 2 where the ratios of approximate (fro eqn (IO)) to exact numerical (rceX) trans- 
mission coefficients are plottcd against E for barri of different sizes (different 19). 
The error inherent in thc use of K&?,E) for finite riers increascs with decreasing 
8, and for the particle and barrier sizes considered, eqn (10) beconics satisfactory 

' 

The exact transmission probability 

MM) = (1 +exp - - E ) ] ] - * ,  (10) 

3 
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only for energies absvc the top of the barrier (E> f ) ,  However, in 
significantly in error at low values of E, and this will afkct the tunnel1 
low temperatures. 

r t  t I I I 

F~G. 2.-Ratios of approximate ( K K )  to exact nutnericat_('ied transmission probabilitiB for truncated 
parabolic barriers, as a function of the reduced energy E. The barrier maxima cornegpond to E = 1. 

widely used formulae for the tunnelling factors for truncated parabolic 
barriers are based on eqn (IO). On substituting it into eqn (8) he obtained an analytic 
approximation for the resulting integral, yielding 

Bell's 

Although individual terms in this expansion have singularities at integer values of l/flr there is exact mutual caocell$tion of such terms so that the sum remains finite 
and eqn ( I  I )  is defitied for all values of /I that in the high 

ternperaturc region where 

* Boll also noted 
* In Boll's original trCatnicnt hc unnecessarily * restricted the us8 of eqn (1 1) to pT=.l. 

rl, ( f i ,  T) becomes 

which has been used widely.2* l o  The accuracies of these approximate formulae 
are illustrated in fig. 3, where their predictions are compared to the exact numericd 
values rex(J,T) ; the solid curves used eqn (1 1) for T-, and the broken curves eqn (12). 
The breaks in the solid curves at integer values of 1 /flTare a reminder that two of the . 
terms in the full expansion ofiight sidc ofeqn (1 1) are singular at each of these points. 

f 
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I I 1 

1.0 26 30 46 

PT 
FIG. J.-Ratiosof approximate (Fa) toexact numerical (rex) tunnelling factors for truncated parabolic 
barriers. The solid curves were obtained by using eqn (1 1) for rmr and the broken curves, eqn (12). 
The breaks in the former for pF< 1 correspond to the points at which pairs of terms in eqn (11) 

blow up ( i s . .  where 1 /fir is a n  integer). 

The effects shown in fig. 3 reflect the trends seen in fig. 2, the errors in the approxi- 
mate formulae increasing with decreasing p and T For all barriers# the simple 
approximate formula rt is as good as the more general expression :Tk whereuer 
the latter is reasonably accurate. For the larger barriers (p2,20), this appears to 
include virtually all T> 1/p. On the other hand, for all barrier sizes, none of the 
approximate formulae are at all reliable for T< 1 /#J.* In addition to rl, and rz, 

+In addition to the results shown in fig. 3, a calculation for @ = 80 showed that its I‘&/I’,, 
curve has a minimum of 0.57 at @T = 0.84, while for all PTX 1.05 it is within 1 % of unity. 

this includes eqn (7) and (10) in Bell’s paper? which were suggested for use in this 
region. The former, proposed for T< I//?, yields curves of Tm/rex which are identical 
to those for rl, from PT = 0 to approximately their minima, and then rise to infinity 
at BT = 1. The latter, designed for T e  1/p, yields negative values of rm/rsx 
for all T outside a very narrow interval about T = 1 /P ,  and even in this interval it is 
significantly less accurate than is I-;. 

table 
VII, which contains most of the reliablc data on the dimensions of energy barriers 
for proton transfer reactions. For all of the casqpresented there 8230, and the 

. temperatures corresponding to /i’T = 1 range between 130 and 250 K. Since most 
of the results were obtained using r: (eqn (12)),’ the experimental data for these cases 
must have corresponded to /3T> 1, and fig. 3 suggests that their derived barrier 
parameter should be reasonably accurate. However, the present results clearly 
demonstrate that in those cases for which eqn (11) had to be used (where /IT’S I), 
the reported barrier parameters are probably unreliable. 

Another situation in which Bell’s ’ approximate formulae have been used is in 
calculating tunnelling corrections to the rates of the isotopic 
rcactions. Weston fitted a parabola to the reaction path at the saddle point of a 
Sat0 l7 potential surfacc for coliinear collisions, and wed Beli’s formulae to estimate 

To put the present results in perspective it is helpfiil to consider Caldin’s 
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the tunnclling through ir. This parabolic barrier was 8.0 kcal/mol 
p 2t 11.64, so that T=.I /o  corresponded to 340°K. Usin8 the pre 
was found that Wcston's prcdictcd tunnelling factors at 1000, 
arc rcspcctivcly 6 % larger, arid 6 and 35 "/, smaller than t i e  exact t 
foc his barrier. 

A P P R O X I M A T I O N  OF BARRIERS B Y  ECKART A N D  P A R A B O L i C  F U N C T I O N S  

RESULTS FOR H C H z  
. This section examines the validity of approximating an actual 
convenient analytic function, by considering the tunnelling contribu 
of the simple hydrogen exchange reaction. Here the exact I-Dim 
as the minimum potential path on the potential surface for coll 
A nuinber of treatments have previously estimated the amount of tunnelling in this 
system using Eckart 3* lo. 18'20 or parabolic lo* l6 approximations to the actual 
potential barrier. 

Thc potential surface used here is the one rcported by Shavitt, Stevens, Minn and 
Karplus," scaled by a factor of 0.89 as rcconimended by S h a ~ i t t . ' ~  The method of 
obtaining the present I -Dim barrier from the low-cnergy path 
described elsewhere." Fig. 4 shows the actual energy barricr so 
and five approximations to it. Curves E, and P, are respectively 
b o k  potentials with both the same height and curvature (second 
maximum as the " exact " barrier. Similarly, curves E2 and 
parabolic barriers chosen to have the same height, and the same width at htlf maximum 
as the actual curve. The additional curve, S, is the Eckart function Shavitt l9 
used in estimating tunnelling factors for this case. His potential had the same curva- 
ture at the maximum as the actual barrier, and was " selected by inspection to give a 
good fit to the ab initio barrier over as much of i t s  upper part as possible ". The 
constant reduced mass used with these potentials is p = MH/3 = 0.335 94 a.m.u. 

L 

x[Al 
C 

FIG. 4.-Comparison of apal theoretical I-Dim potential barrier for collinear N+ Wz coltisions 
(curve A) with analytic approximations to it. Curves P1 and Pz are truncated parabolas correspond- 
ing to p = 14.74 and 24.84, .tespectively,while curves E,  and Ez are Eckart functions, V(x)  = Val 
cosh2 (xla), with a = 0,566 and 0.768 respectively. El and PI have the same curvature at the 
maximum as does curve A, while E2 and Pz have the same width at half maximum. Curves is the 

Eckart function with which Shavitt ' 9  approximated the barrier for this case. 

Fig. 5 shows the calculated tunnelling factors for these potentials as a function of 
temperature ; the curves are labelled as in fig. 4. The total computer time ~ ~ u i ~ e ~  

, ' 
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to generate curve A was less than I rnin 011 an IBM-7094. 
the prescnt Eckart tunnelling factors (curves El  and E,) are closer 
than arc the parabolic results. 
yields tunnelling factors that are good, especially at low temperat 
hand, the manner in which the approximate results straddle curve A (in 
that their main source of error lies in the criteria used to fit 
the actual one. This i s  confirmed by the fact that Shavitt's Ecka 
tunnelling factors in remarkable agreement with the present ex 
large differences between his barrier and the actual one. 

. certain that systematic variation of the two free EckarC para 
better agreement with curve A. By comparison, it was 
parabola would yield tunnelling factors in good agreeme 
whole temperature range shown. The best fit of this sort 
had T(T) values which were significantly too small at high temperatures and too large 
at low. Thus, while the tunnelling factors for the M+ H2 case are insensitive to the 
nature of an approximating barrier except near its maximum, they are very sensitive 
to its shape in this region. In any case, exact numerical compuptions of r(T) should 
be used whenever the shape of the barrier is known. 

As 

However, none of the pr 

300. 400' 500 600. 700. 
I I i 1 i 

T [Kl 
FIG. 5.-Tunnelling factors for the potentials shown in.fig. 4, labelled in the same manner. The 

broken horizontal line lies at unity. 

CONCLUDING R E M A R K S  

A method has been presented for calculating the exact transmission probabilities 
and tunnelling factors fof any I-Dim potential barrier. Jt has been used to determine 
the region of validity of Bell's approximate expressions for the tunnelling factors 
for truncated parabolic barriers. It has also been used elsewhere to help correlate 
with theory some new experimental measurements of the relative rates of the exchange 
rcactionv 1 I -i- HZ ancl 1-1 -i- D,. 

t'orl1~dit~ :ire iipproprhtc itre prcciscly thosc in 
wlricli tlicrc is rcliitivcly tiltlc Lmrricr trriiismissioti exccpt nt ciiergics close to and 
above its maximum. This insensitivity of such results to the nature of the potential 
except near its maximum is further Nustrated by the success of Shavitt's L9 approxi- 
mation for the H f Hz tunnelling, discussed in the preceding section. This suggests 

'rho systems in which IkWs 
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that if experirncntal results may be accurately explaincd using eqn 
values of p and 'r' for which these exprcssiotw accurately rcfbct 
truncated parabola (e.~., fix 20 and 'I"> l//l), then the trurtcatcd para 

. accurately approximates the shape and height of tlic actual I-Dim 
near its maximum. 

The above quantitative confirmation of the validity of eqn (11) 
barrier situations (negligible tunnelling at low energies) will be re 
mentalists who have been interpreting their data using these 

, the present method offers a way of treating cases where tunnel 
energies well below the barrier maximum, but for which the Eckart funqons results 
are not sufficient. However, the whole of the present approach is based on the 
strong assumption that a multi-dimensional problem may be meaningfully represented 
in 1-Dim. The validity of this approximation has been examined by Truhlar and 
Kuppermann.22 

This work was supported in part by National Aeronautics and Space Administra- 
tion Grant NGL 50-002-001. The authors are also grateful to  the Nation 1 Research 
Council of Canada for support, and for the award of scholarships t d two of UP 
(R. J. L. and K. A. Q.). In addition, we thank Dr. R. L. Le Roy for helpfgl comments 
on the manuscript, and R. J. L. gratefully acknowledges the encourage&ent of Prof. 
R. B. Bernstein. 
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APPENDIX A: DISSOCIATION ENERGIES OF DIATOMIC MOLECULES FROM VIBRATIONAL 

SPACINGS OF HIGHER LEVELS: APPLICATION TO THE HALOGENS 

This appendix conta ins  a pre l iminary  account of t h e  work discussed  

i n  Sec t ions  3.1 and 3.2; it i s  r e p r i n t e d  from Chemical Physics  Letters, 

Volume 5 ,  pp. 42-44 (North-Holland Publ i sh ing  Company, Amsterdam, 1970) 



a, - 
Volume 5. number 1 CHEMICAL PHYSICS LETTERS 

181 

15 February 1970 

DISSOCIATION ENERGIES O F  DIATOMIC MOLECULES 
R O M  V I B R A T I O N A L  S P A C I N G S  O F  H I G H E R  L E V E L B :  

APPLICATION T O  T H E  HALOGENS * 

ROBERT J. LEROY ** and RICHARD B. BERNSTEIN 
Theoretical Chemistry Instilute and Chemistry Department, 
Univers i ty  of Wisconsin. Madison, Wiscons in  53706, USA 

.Received 22 December 1969 

The distribution of vibrational levels near the dissoclntion limit D, governed mainly by the long-range 
part of the potential. can be WKB-ap?roxlmated to yield a simple expression which permits accurate de- 
termination of D. Improved ground-state dlssoaintlon energies are presented for CI2. Br2 and 12. 

1. INTRODUCTION 

Since its introduction 44 years ago, the 
Birge-Sponer (BS) extrapolation procedure has  
been widely used (mostly in its original form) to 
evaluate dissociation limits (D) of diatomic mole- 
cules from vibrational spectroscopic data [11. 
The main difficulty i n  its application arises from 
the curvature generally exhibited in the "tails" 
of BS plots near the dissociation limit, which 
give rise to uncertainty i n  the extrapolation. The 
present communication reporls a better, WKB- 
based method (derived and more fully discussedi 
elsewhere [2]) which takes proper account of this 
curvature. 

The new procedure has been applied to the 
halogens [2], yielding ground state Do values 
with much smaller uncertainties than heretofore 
obtainable. These results are presented in sec- 
tion 3. 

2. METHOD 

For highly excited vibrational levels lying 
close to the dissociation limit D ,  the potential 
V(R)  through their outer turning points may be 
well represented by an inverse-power functional- 

* Work supported by National Science Foundation 
Grant GB-16665 and Nationnl Aeronautics and Space 
Administration Grant NGL 50-002-001. 

Saholar. 
** National Researoh Council of Canada Postgraduate 

2 

ity 
V(R)  = D - C n / R n .  (1) 

Differentiating the WKB eigenvalue expression 
with respect to energy, approx'imating the exact 
potential by eq. (I), and integrating (neglecting 
the small contribution to the exact integral from 
the region of the inner turning point), one ob- 
tains 

Here E ( v )  is the rotationless (J=O)  energy of 
level z1, 

function, and Ifx a collection of constants; 
dE(v +$)/do is very nearly AGv+$, the conven- 
tional BS ordinate. Eq. (2) requires (as is  gener-, 
ally observed) positive (upward) curvature in  Bs 
plots for energies near enough to the dissociation 
limit for eq. (1) to be appropriate. 

In practical applications i t  is convenient to 
use the integrated form of eq. (2); for n f 2 this 
becomes $ 

the reduced mass, F ( x )  the gamma 

$ Expressions analogous to eq. (3) have also been ob- 
tained [2,3] for the fa = 2 caae, and for a potential 
wlth an exponential long-range tail. 
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where  

Here u D  is an  integration constant: f o r  cases of 
n \ 2 i t  c a n  be identified as the "effective" (non- 
integer)  vibrational index a t  the dissociation l im- 
i t  (i.e., E ( I ' D )  = D). 

Determination of D (together with n, C I 2 ,  and 
vD) using eq. (3) r e q u i r e s  a t  le'wt four  (p re fe r -  
ably more )  vibrational energies .  The  bes t  ap- 
proach is to c a r r y  out a non-linear l ea s t - squa res  
f i t  of exper imenta l  eigenvalues to eq. (3), to 
yield a "best" s e t  of p a r a m e t e r s .  However, 
typical non-linear r eg res s ion  p rograms  * r e q u i r e  
fa i r ly  accu ra t e  ini t ia l  t r i a l  values  of the un- 
knowns to e n s u r e  convergence to  the "best" final 
values. Suitable s t a r t i ng  values  f o r  n and U D  may 
be  obtained by fitting the da t a  to the following 
linear expression,  obtained f rom eq. (3): 

Using these  n and U D  values,  eq. (3) becomes  
I l inear  in  the new variable  

(3') 
Fitt ing the data  to eq. (3')  then yields  t r i a l  values  
of D and Kn. The ful l  s e t  of p a r a m e t e r s  now 
s e r v e s  as the t r i a l  s e t  f o r  the refined non-linear 
l ea s t - squa res  f i t  to eq. (3) which yields  the "best" 
pa rame te r  values. In principle,  eqs.  (4) and (3') 
are jus t  as accura t e  as eq. (3). However, in 
pract ice ,  the p r io r  smoothing of expeTimenta1 
ene rg ie s  to  obtain the der ivat ives  in eq. (4) in- 
t roduces  s o m e  e r r o r ,  so that  the subsequent fit 
to  eq. (3) is slightly m o r e  reliable.  

3. RESULTS. GROUND-STATE DISSOCIATION 
ENERGIES OF THE HALOGENS 

Application of the p re sen t  method to  spec t ro -  
scopic  d a t a  f o r  C12, Bra ,  and 12, together  with 
conclusions regard ing  the na tu re  of the long- 

* The .present computations employed the University of 
Wisconsin Computing Center 's subroutine GASAUS. 
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range  f o r c e s ,  a r e  d iscussed  in detail  elsewhere 
[2 ,3] .  Altention h e r e  i s  r e s t r i c t e d  to the values 
obtained f o r  the ground (X It'+) s t a t e  dissocia-  
tion energies .  

t ransi t ions between the ti'' = 0 level of the ground 
electronic  state and highly excited vibrational 
levels ( t i ' )  of the B311ifu state. Fit t ing these to 
eq. (3) by the numer ica l  methods d i scussed  in 
sect ion 2, yielded the dissociat ion l imi t s  D f o r  
the B-states .  Subtracting f r o m  D the accurately 
known 2P,,, - 2P,,2 atomic spin-orbi t  spli t t ing 
(AE) yielded values of Do f o r  the  ground (XICg) 
s ta tes .  

g 

The  exper imenta l  data  are the band or igins  f o r  

3.1, Ck Eorhte 
The  m o s t  extensive measu remen t s  are f o r  

35, 35C12 [4]. The  p resen t  analysis  of these d a t a  
places  D s o m e  2.85(+0.15) e m - 1  above the highest  
observed  level ,  I ) '  = 31 (cf. the expe r imen te r s '  
value: 3.1(&2) cm-1  [4]. Subtracting f rom D the 
AE of 882.50 c m - 1  [5, 61 yields a dissociat ion en- 
e rgy  of Do = 19997 .25(~0 .15 )  c m - l  (see table 1). 

3.2. Bromine 

79, 7 9 ~ r 2  and 81y 8PBr2, ene rg ie s  of four  adja- 
cent  vibrational levels  very  n e a r  the B-state d i s -  
sociat ion l imi t s  have been r epor t ed  f 7 J  Analysis 
by the p re sen t  method, yielded binding ene rg ie s  
of 5.24(&0.17) e m - 1  and 6.96(*0.22) e m - l ,  re- 
spect ively,  f o r  the highest  observed  level of each  
spec ie s ,  U' = 53$ .  

4 It has been found [3] that the experimenters' [7] vibra- 

.c 

F o r  each  of the u r e  isotopic  spec ie s  

tional assignments for the four levels near the dis- 
sociation limit should be increased by one. 

Results for the halogensa) 
. Table 1 

3 5 * 3 5 ~ 1 2  31 2.85 f 0.15 2.479 367 i 0.000019 

7 9 3  T9Br2 53 5.24 f 0.17 1.97069 f 0.00004 

81,81Br2 53 6.96 f 0.22 1.97095 f 0.00005 

1 2 7 9  1 2 7 ~ 2  72 1.542 49 * 0.000 14 

(3.1 f 2.0) [4j 

I (2.7 f 0.5) [7j 

(4.1 f 0.5) [7] 
19.6 f 1.1 
(12.6) [91 

a)The values in parentheses are the previous best es- 
timates of these binding energies. The uncertainties 
in the present results correspond to a 95% statistical 
confidence limit. The energy conversion factor was 
taken from ref. [MI. 

43 

I 
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These  values  are significantly g r e a t e r  than 
the 2.7(*0.5) and 4.l(rt0.5) cm-1 ,  respect ively,  
obtained 171 f rom extrapolat ions of l imiting 
cu rves  of dissociation. Subtracting A E  = 
= 3685.2(*0.3) c m - l  [8] f rom the thus-obtained 
D values yields:  

"Br2) = 15  894.5(&0.34) cm"' 

and 

Do(81, 81Br2) = 15  896.6(*0.37) c m - l .  

The  zero-point shift is in  good accord  with the 
more-d i rec t ly  obtained value of 2.029(& 0,013) 
c m - 1  f rom ref. [71. 

3.3. Iodiue 
F o r  the case of 127,12712, the data  [91 f o r  the 

highest  observed  levels  of the B-state  are r e l a -  
tively l e s s  accurate .  The  p resen t  analysis  yields  
a binding energy  f o r  the uppermost  r eco rded  
level,  u' = 72* ,  of 19.6(*1.1) c m - 1  (considerably 
g r e a t e r  than the expe r imen te r ' s  e s t ima te  [9] of 
12.6 cm-1). 

Using A E  = 7603.15 c m - l  [5 ,12]  one obtains 
Do = 12440.9(*1.1) cm-1. Th i s  value d i f fe rs  s ig-  
nificantly with the previously recommended one 
of 12452.5(*1.5) cm-1  [13]; the s o u r c e  of the dis- 
crepancy is d i scussed  e l sewhere  [14]. 

4. CONCLUSIONS 

A new method has  been desc r ibed  f o r  ex t r a -  
polating beyond the highest  observed  vibrat ional  
levels  of a diatomic molecule to  de t e rmine  its 
dissociat ion limit. On the b a s i s  of t he  avai lable  
evidence [2,3], i t  appea r s  to  be  m o r e  re l iab le  
than the uti l ization e i t h e r  of the l imiting cu rve  of 
dissociation** or of a BS extrapolation. F o r  

*It has been found [lo,  111 that the vibrational numbering 
of ref. [9] should be decreased by one. 

**See, for example, ref. [15], 

levels nea r  the dissociation l imit  for which the 
BS plot shows posit ive cu rva tu re ,  i t s  use should 
supe r sede  that of the conventional Birge-Sponer 
extrapolation. . Table  1 s u m m a r i z e s  the r e s u l t s  of applying 
the present  method to the de te rmina t ion  of the 
halogen dissociat ion energies .  Binding ene rg ie s  
of the highest  observed  B-state  vibrational Levels 
(uh)  are a l so  tabulated and compared  with pre-  
viously r epor t ed  values. 
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APPENDIX B: RECOMBINATTON OF I O D I N E  ATOMS I N  DILUTE SOLUTIONS 

OF ARGON 

The rate cons t an t s  i e p o r t e d  i n  t h i s  s e c t i o n  are analyzed 

according t o  a mechanism which assumes thermal  equi l ibr ium between 

I and A r  atoms, and molecular I-Ar,  F i t t i n g  t h e  mechanism t o  

t h e  experimental  d a t a  y i e lded  an estimate of t h i s  equi l ibr ium 

cons tan t  and i t s  temperature  dependence. Following t h e  d i scuss ion  

of Sec t ion  4.2 (above),  t h e s e  are used t o  determine approximately 

t h e  depth and minimum p o s i t i o n  of t h e  I -Ar  p o t e n t i a l  w e l l .  

should b e  noted,  however, t h a t  t h e  va lues  obta ined  are probably some- 

It 

what l a r g e ,  s i n c e  the  express ion  used f o r  t h e  equi l ibr ium cons tan t  1 

treats t h e  quasibound levels  of t h e  diatomie 2 as unbound, wh i l e  i n  

p o p l a t i o n  of I--Ax. 3 

f a c t  they  w i l l  make a s i g n i f i c a n t  con t r ibu t ion  t o  t h e  equi l ibr ium 

The work presented  below i s  r e p r i n t e d  from t h e  Proceedings of 

t h e  Royal Socie ty  of London, S e r i e s  A ,  Volume 316, pp. 81-96 (19701. 

FOOTNOTES : 

1. S .  K. K i m ,  J. Chem. Phys. 46, 123 (1969). 

2. See Chapter 7, 

3 .  

__. 

D. E .  Stogryn and J. 0 ,  Hirsch fe lde r ,  J. Chem. Phys. 31, 1531 (1959) - 
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toination. of iodine atoms in dilute qoluthns of mgont 
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(Qmmunicated by R. B. W. Norrish, -F.R.S.--PZeceived 30 June 1869 
-Revised 17 November 1969) 

The reaction 2I+&+ I,+& waa studied at 298, 323 and 423 K by flash photolysis. The 
overall rate constant, boba, for this reaction is a linear function of [Ia)/[&], but below 
[I,]/[&] - 10-4, the relation becomes non-Iinear and hob, falls below extrapolated values. 
The fall-off is explained in terms of a mechanism involving an IAr intermediate: 

I + A r  IAr 

The equilibrium separation in such an IAr complex is 0.55 nm and the binding en&gy is 
6.3 kJ mol-l(1.5 kcal mol-'). This mechanism predicts the onset of the fall-off in agriement 
with the available experimental data. Moreover, the temperature dependence of this onset 
and the temperature dependence of the recombination rate constant from 298 to  1500 K 
are also satisfactorily explained. 

In addition to the above, the new mechanism yields quantitative agreement between 
our new rate constants 'and those reported previously. These combined data for 298 K 
yield a value of 3.00 (k 0.16) x loo l2 moP2 s-l for the rate constant for the reaction 

&+I+ I,+&. 

2I+Ar+ I,+&, 
1.00( 0.09) x 10la l a  s-I for 2I+I,-t  21,. 

Several other mechanisms are also considered, including some previously sugge'bd in 
the literature. It is shown that none of these explains satisfactorily at2 the exprimen& data. 
However, moa6 of the available experimental data could be explained, if i t  were &sumed 

'that the recombination proceeds via an unobserved electronically excited I,; formed from 
two %Pp atoms, with a potentid well 21 to  29 kJ mol-1 deep (6 to  7 kcd  mol-l). 1 

9 

- i  
INTRODUCTION 

e $ermdecular recombination of iodine atoms in the presence of a third body, 

21+iM+-tZ+M, (1) 

4Izlldt = kbs[112 EM1 (2) 
was studied by Rabinowitch & Wood (1936)~ using a photostationary method, and 
by Christie, Harrison, Norrish & Porter (1955)~ Strong, Chien, Graf & Willard i 

t This work was presented, in par6 at the Toronto Meeting of the American Physical 
Society: Bull. Am. phys. SOC. II, 12,638 (1967), and, in part, at the Meeting of the American 
chemical Society, Atlantic City, September 1968. 

4 Present address: ?'heoretical Chemistry Institute, University of Wisconsin, Madison, 
Wisconsin 53706, U.8.A. 

8 Preaent address: Department of Chemical Technology, Eyerson Polytechnicd Institute, i 
I 

oronto, Qntmio. Gtmda. li 
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I' 1 Ontario, Chnada, 
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82 G. BurnsP R. J. LcRoy, D. 3;. Morriss and J, A. Blake 
(1957)~ Bunker c9: Dnvidson (1958)) Eriglcman & Davidson (1960)~ IGarner, Banes 
& Bair (1961) and Porter & Smith (1961), nll of whom uscd flash photolysis. R ,a b' 1no- 
witch (1937) suggested that such recombination proceeds via an 1-M complex. 
If more than one third body (M,) contributes to the.reaction, Etabinowitch's 
mechanism may be generalized as follows: 

kst 

k - o i  
I +M*F===?- mi, (3) 

IMi+I--% I,+&, 

IM,+IM,-% I,+M,+M,, 

Assuming that  equilibria (3) are maintained, equation (6 )  reduce&.%o 
N N N  

dI?zI/dt C hiK3i[I12 [Mi1 + i=j C j=1 Z: &iijKa&3@12 Df& (7) 
i=l 

where K3i = k3$/k+i is the equilibrium constant for reaction (3). 
The experimental rate constant kob, (equation (21) has usually been obtained by 

optically monitoring the concentration of I, following the flash. I n  this case, the 
apparent iodine atom concentration is 

where [Ijspp is twice the concentration of dissociated molecular iodihe (i.e. 

d[I,l/dt = - Q dEI1,ppP. 
Replacing [I] in equation (2) by [I]spp, and combining the result with equation (71, 
one obtains 

xs,,, = (dCI,l/dt) FLtp F11-l 

1 

i 

1 'j . 

where M, is the diluent gas which is present in large excess. 
I n  the past, it has usually been implicitly assumed that  concentrations af IM, 

complexes are negligible compared with the iodine atom concentration, and %hat 
Ka&MJ] < 1 for all i. The contribution of ( 5 )  also was usually neglected. In this case, 
since in most experiments the only third bodies available were molecular iodine and 
a single diluent; gas, equation (9) reduces to  

I- (W b~~1 = k4M k3M + Jc41p K312 &]/ 
= IC, + ~I,[I,l/[n%l. 

' ,  
1 . 8  

' i  - 

i -  
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Equation (10) has been verified for various M over an appreciable range of I 

, [l[z]/[M] rtttios (Christie et al. n955). However, Christie $6 d. (1955) 
et al. (1961) observed that  if the [12]/[MJ ratio is less than about 2 x 10 
below the extrapolation of results obtained at higher concentration ratio 
Christie (1962) deduced the existence of the fall-off from the results o 
Davidson (1958). Since fall-off occurs at low dilution ratios, it cannot 
t o  the thermal effects described by Burns & Hornig (1960) and by Burns (3967). 
Christie et al. (1955) suggested that  the fall-off couId be attributed to  the 

However, they made no attempt to  identify the metastable iodine. 
The present work was undertaken to investigate this low con 

fall-off and to  determine the nature of the intermediate that woul 
existence. 

I 
i 

1 
I 
I metastable iodine molecules which are deactivated only by collisions 

EXPERIWENTAL 
I 

I The iodine recombination reaction in argon was investigated in two conventional 
flash photolysis apparatuses. The reaction vessel of apparatus I was doublawalled, 
constructed of quartz tubing, 167 cm long, and had a 35 mm diameter. $he flash 
lamp, also made of quartz tubing, was 175 cm long and had a 9 mm diam’lter. The 
flash was generated by discharging through the lamp a lOpF capacitor, at, ypically 
15kV. The lamp and the reaction vessel were mounted parallel within { polished 
aluminium reflector. The reflector was wrapped in heating tape and asbestos insula- 
tion. The reaction vessel could be heated to 450 K; the temperature fluctuation along 
the length of the cell was less than 2 K. Agreaseless vacilum system was constructed 
for these experiments; Teflon t h e  stopcocks were used in the vacuum system. 

Flash photolysis apparatus I1 was similar, though physically smaller. A single 
walled reaction vessel and flash lamp were mounted in a furnace; the portions of the  
vacuum system containing iodine were enclosed in an oven which could be heated 
t o  1200 IC. Greaseless stopcocks were used in these portions of the vacuum system. 

The recombination waa monitored using B quartz incandescent lamp, collimating 
lenses and an RCA 931-A-photomultiplier tube. The analyzing beam WM rendered 
monochromatic using an interference filter and a Corning no. 3357 cut-off filter. 

width of 7nm. The amplified output of the photomultiplier was displayed on an 
oscilloscope and photographed. Four to seven photographs were taken and combined 
to obtain one value of the rate constant. A second photomultiplier monitored the  
drift in intensity of the analysing light. The response time of the photomultiplier 
circuits was better than 1.5 ,us. 

The iodine molecule concentration was determined from the optical transmission 
of the cell before and after filling with an I&r gas mixture; for this purpose, the  
decadic ezrtinctiw coefficient was determined for each apparatus. I n  these detjer- 
minations, an ice bath was used to produce a standard iodine vapour prewure, The 
vapous ~~~~~~~~~~~~~~t~~~ solation of Gillwpio st l.’rcn~lor (1936) WM nsod, 

I 

I J  
I !  
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1 
@his combination of filters had a transmission peak at 487nin with a peak half- 
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RESULTS 

To obtain hob@, the data were reduced according to the integrated form of squn- 
tion (2). Por ratios [Ia]/[Ar] > 10-4 ('high ratio' rcsults), the values of hob@ (Bhown in 

I i 

lo4 (&l/[~l) 
RGWRE 1. Recornbination rate constants, 7cob8, against [Ia]/[Ar] at room temperaturg: 

Bunker & Davidson (1958); CHNP, Christie et al. (1955); 0, Strong et at. (19i7) 
earner et aZ. (1961); ..., this work-apparatus 1;  x , this work-apparatus 2. 

. .  ! .  

104 (EIJ/[&I) 
FIGURE 2, Recombination constants, kob, against [Ia]/[&] st 323 K ( 

), obtained from appara+,us '6. 
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ecombination of iodine atoms in dilute solutions in argon 86 
1 figures 1 a i d  2) were a 1inan.r function of [I,l/[Ar], as preciictccl by sqimtioii (10). 
l'hc values of k,,, arid kiz ,  defined ns tlic intercopt$ n i d  dopa of this lincnr plot, ngrw 
wcll with thosc in tho litora$urc (BOO tnblo 1) oxccpt that  tho prcsonti vrtluos of k,, at 
298 and 323 IC are somewhat lower than those of previous investigators. Howovor, 
this discrepancy may be partially explained in tnrins of the mechanism which ac- 
counts for the low concentration ratio fall-off. This mechanism will be described 
l&er in this paper. 

TABLE 1. SUMMARY OB RESULTS ON RECOMBINATION OF IODINE ATOMS 
IN fh AND I,, ZNTEBPRETED ACCIORDING TO XQUATION (10) 

T/K . 10-6 kAr/12 mol-e 8-1 10-12 kIZ/  la mol-* s-l Reference 
298 3.3 5 0.36 0.85 Christie et al. (1955) 

2.9 & 0.3 1.9 & 0.2 Bunker & Davidson (1958) 
2.4k0.1 1.4 2 0.2 This work, apparatus I1 

323 3.15 0.973 & O.l$ Engleman & Davidson (1960) 
2.99 i: 0.15f 1.07 & 0.18-f Engleman & Davidson (1960) 
1.9 & 0.1 1.0 * 0.1 This work, apparatus I 

423 1.84 0.227 & 0.053$ Engleman & Davidson (1960) 
1.66 5 0.05-f 0.143 & 0.038f Engleman & Davidson (1960) 
1.6 & 0.1 0.38 2 0.2 This work, apparatus 1 

-f Calculated from d a h  obtained by Bunker & Davidson (1958). 
$ Obtained from measurements in excess of He. 

TABLE 2. hobs, [Ia] r n ~  [Ar] ROOM TEMPERATURE, APPDATUS I 
100 k*/P mol-% 8-1 10~~z]/moll-l loz [Ar]/moll-l 

no filter wed 
1.70 0.067 8.01 
1.62 0.077 7.79 
1.67 0.096 7.97 
1.48 0.150 6.49 
1.77 0.139 5.83 
1.77 0.169 6.11 
1.84 0.134 4.23 
2.08 0.155 4.25 
2.13 0.219 4.21 
2.32 0.228 3.58 
2.39 0.254 2.40 
2.44 0.373 1.67 

K,Cr,,O, filter solution used 
1.78 0.076 7.77 
1.69 0.083 7.89 
2.00 0.148 7.91 
2.05 0.199 7.86 
1.87 0.181 7.15 
2.11 0.158 7.89 
2.27 * 0.214 5.41 
1.96 0.332 7.87 
2.13 0.368 5.68 

2.13 0.390 4,12 
2.49 0,823 3.94 

2.27 0.284 3.95 . 
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Room temperature rate constants for [I,]/[Ar] < lo-& ('low ratio' rosulte) fall 

below the linear ostrepolntion from those at higher ratios, in agrcernent with thd 
findings of previous investigators ( tdh 2 and figuros 1 mid 2). 

DISOUSSION 
I 

1 

The rate constant drop-off at low concentration ratios (figures 1 and 2) may be 
explained in torms of the participation of an intcrmcdinto crpecies in tho reaction 
process. I n  this section several possible intermediatcs are considered; howover, 
it is shown tha t  only one of these can successfully account for all of the experiqental 
observations. 

~ Participation of I,(B 3rI&) 
It was pointed out by Nikitin (1966) tha t  the low [I2]/[&] fall-off may be due to 

the participation of electronically excited iodine molecules. Such molecules may be 
formed either from ground state atoms (2P4) or from excited iodine atoms (%PA). The 
recombination of excited atoms with ground state atoms into attractive states, 
one of which (B is known, may take place, It has been argued by Snider ($966) 
t ha t  these B3n& molecules deactive to the ground state only upon collisio ':with 
other I,. Thus, at low [12]/[Ar], this route for recombination would be ineJctive 
and the fall-off would occur. Snider also pointed out tha t  this mechanism $not in 
disagreement with the data of Christie et uZ. (1955). However, Steinfeld & Kltfhperer 
(1965) found that  €3 "nr,C, molecules predissociate very readily on collision with inert 
gases. Therefore deactivation via collision with I, could not be important. Noreover, 
the radiative lifetimeof B3H& state is of the order of a microsecond, which is three 
orders of magnitude shorter than the  typical recombination time. For these reasons, 
B 312$u state cannot account for the observed fall-off. 

Participation of excited I(,Pg) atoms 
Another possible explanation of the fall-off involves direct participation of 

(11) It2Pjt) atoms: 

Alternatively, I( ,P$) atoms may participate in the overall recombination reaction 
via electronically excited I,, other than 317&,. 

I(2Pi) +I, + I(ZP3) +I2. 

I(2Pi) + 12(%:) -z I,(elec. excited) +I(2P+) -+ I,(lZ:) + I(2Pa) (12) 
in a reaction which precedes the recombination. The fall-off would then be observed 
at low [I2]/[&]. Experiments suitable for testing the validity of this mechanism 
were carried out  by Christie et aZ. (x955), who flash photolysed I, in Ar, using a 
potassium dichromate filter solution in a double walled photolysis reaction vessel. 
This filter limited the wavelength of the photolysing light reaching the reaction 
mixture, so that  the B 31'l& iodine molecules, formed in the photolysis were at least 
800 cm-l below the dissociation limit of the state. I n  this case the B 3rI& molecules 
predissociate t o  give two Trp, atoms, thus effectively preventing the production of 
x ( 2 q ) .  

190 
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Ciiristie et al. (1955) found that the use of htie potassium dichromate filtor soliition 
did not affect the magnitude of the rate constants. Wnfortnnatcly, only one cxperi- 
ment was performed in tho fall-off region; i t  mggestod tlmt mqpliniiisrri involving 
reactions (1  I) and (12) cnnnot account for the nbnorinnlly srriall rato constants at 
low [I,]/[Ar]. We extended the range of the Christie et al. (1955) experiments and 
obtained twenty-one rate constant measurements in the ' low-ratio ' region. I n  
elevexi of these, a potassium dichromate filter solution was used; in the remainder, 
no filter was used. The results (table 2) indicate that; the rate constants in the fall-off 
region may be lower by about 10 (!/,, if a filter solution is not used. However, such a 
discrepancy is almost within experimental error. Therefore, it is concluded tha t  
'while reactions (11) and (12) may contribute they are not the main cause of the 
observed fall-off. This concIusion is in agreement with direct measurements of the 
I(,P+) relaxation rate due t o  I(2P$ -I, collisions, reported by Donovan & Husain 

Participation of vibrationally excited I,(XlX;) 
(1965)- 

To explain the fall-off at low [I,]/@I], Christie (1962) proposed the followin& 

19 1 

. ,/ , 

- .  

mechanism : 
I +I +M -+ I$ +M, (13) 

I$ +I, -+ 21,, (14 

this mechanism, the relaxation (14) becomes the rate determining step a t  low p,]/ 
where 1; is a vibrationally excited grouad state ('C: ) iodine moIecule. According t o  

m] ratios. However, Shields (1960) showed tha t  vibrational relaxation of I,(1 
much too fast to cause thefhl-off in kObs a t  concentration ratios of the order of 
a'he theoretical analyses df Nikitin (1962) and Snider (1966) also preclude an e 
ation involving reactions (13) and (14), which will not be further discussed here. 

- -  

I 

Participation of electronically excited I, produced from two Tpa, atoms 

An alternative explanation of the fall-off involves the participation of electronic- 
dly excited molecules, I:, produced from atoms in the ground electronicstate 

i 
I 

f (Le. two I(2Pa) atoms). For the experimental situation where only I, and asingle 
i are present a8 third bodies, this mechanism may be written as 
I - I+I+M"'"- I,+M, (16) 

I+I+I,-J% a,+1,, 

ku 
I+I+I,-I$+lc,, k-la (18) 

i 

I$ f I, kt 21,. (19) 

, If more than one excited state isl involved, reactions f l y ) ,  (le)) and (10) are repeatied 
for each state. This mechanism i~ pax%icdarly interesting because it would imply 
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that  in the fall-off region thc internrtl (olectronic) distribution function of I, differs, 
during recombination, from the equilibrium distribution function (Nikitin 1966). 

~~~~~~ steady &a% in I$ and %ha approximations inherorit in eguabion (IO), 
the following expression for hob, is obtained : 

G. Burns, E. J. Le oy9 D. J. Morriss and J. A. 

19 2 

where K k17/k-17 = k18/k-18* (21) -9 

The mechanism (15) t o  (19) explains the fall-off at low [I,]/[M] provided tha t  k,, 
and k18 are very much smaller than Kk,,. Then for the special case of very small 
values of [12]/[M] 

(22) 

8 -  

kobs M kl5 + K~l,[I2l/[Ml, 
and for large [Iz]/W] such that  Kill, [12]/[M] B k17, 

k,, = hi5 + kl, + (kl6 + k 8 )  I;IzI/[Ml. (23) 

for the best fit of equation (20) at room temperature, for the special case M = Ar, 
Values of the four independent parameters kI5, k16 + kI8, k,, and li=lC,, were derived 

using the data of Christie et al. (1955). These data were used rather than our own 
(table I), because while the latter are more abundant at very small [I,]/[Ar] values, 
the former extend to much higher concentration ratios, and hence reach both high 
and low asymptotic regions. If the  mechanism (15) to (19) is valid, the  constants 
obtained should apply equally well to both sets of data. 

It was found that  the experimental differences between our work and those of 
Christie et aZ. are appreciable at  higher [Iz]/[Ar] (figure I). On the other hand, the 
Kk,, value obtained from our data (table 1) agrees well with that  obtained from 
the Christie et al. data. This value of Kklg, 1.6 ( k 0.7) x 101312m01-2s-1, quanti- 
tatively relates the nature of the 1; internuclear potential which determines IC, t o  

-. 

the effective collision diameter buried in k19. 
The If mechanism may now be tested by considering its predictions with respect 

to four factors. These are: (1) the nature of the internuclear potential for the I 
complex, (2) the dependence of the ratio at which fall-off begins, ([Iz]/[M])dev, on 
the nature of the third body M, (3) the temperature dependence of ( [Iz]/@’I])dev, and 
(4) the apparent inconsistencies (shown in figure I) between the experimental 
results obtained in different laboratories. 

Ghang (qw) has used perturbation theory to  calculate moderately long-range 
interaction energies for pairs of degenerate atoms for non-resonant cases. Nis 
results show tha t  of the sixteen molecular states €ormed from pairs of ground 

iodine atoms, at least seven other than the ground X lX$ state are attractive. 

, -  
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il where gM/gi, the ratio of molecular t o  atomic degeneracies, is taken to be 2/16, 
and P(E/kT) is the generalized hypergeometric series (Erdelyi 1953): 1 -  3 

I 

These are the single degenerate 31fo;;l state, and the doubly SZ-degenerate VIlu,811tR 
and TI2,, statcs. Qf thosc, oiily the first two aro optically accessiblo fkom tho ground 
state and only the W, has been observed (Brown 193 I 1. 

Calculations were carried out to determine the parameters of the It internuclear 
potential which would account for the fall-off, while giving a reasona.ble collision 
diameter for reaction (19). The equilibrium constant was evaluated for a nlimber of 
well depths (E) and equilibrium separations for I;, using the expres(6on Kim 
(1967)t obtained from Hill's (1955) partition function integrals: 

. 
I 

1; , , 

' 1: 
"I '1 i 

and unit probability factor. In  figure 3, crcRiq is plotted egainst E,  showing the 
possible combinations of collision diameter, equilibrium separation and well depth 

t Modified for homonucloar mobculos by multiplication by a statistical factor of 6, 
I 

' 

/ .  
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for 1;. It, follows from this plot that  for a reasonable valnc of n, tho value of I3 should 
be somewhere bctween 21 aid 20 Id mol-l(5 and 7 kstil mol-l). This is thrce times 
tlie 7.GlcJ mol-l(I.8kcal) dcpth of the potential wall of ASII,,, the only obscrved 
(Brown 193 I )  excited If state which dissociates to two zP# atoms. However, Chang's 
(1967) cakulations show that at long range tlie 3II lg  and a112, states are respectively 
Sand 34 times more strongly attractive than AW,,. Hence, one of these states will 
probably have the 21 to 20 kJ mol-l well dcpth requircd of an acceptable 1; complex, 
We thercforc conclude that  this mechanism (equations (16) to ( I  9)) makes an ac- 
ceptable prediction for the nature of tlic intcrnuclear potential of 1;. 

As a check on equation (24), the equilibrium constant If for formation of 1: in the 
A VI1,, state was calculated directly. The intcrnal partition function was based on 
vibrational energies observed by Brown (193 I )  and rotational constants calculated 
from formulae given by Merzberg (1950). This yielded K = 0.085 1 mol-l, only 20 yo 
larger than the corresponding 0.072 1 mol-l value generated from expression (24). 
This concurs with the conclusion that  the 7.5 kJ (1.8 kcal) mol-l deep.A 31118 state 
cannot be the main cause of the drop off. 

Condition (2) can now be further tested by considering the asy 
expression (20) for very large and very small concentration ratios. 
value of ([Iz]/[M])aev may be obtained by solving equations (22) and (23) for their 
point of intersection 

Since the relative efficiencies of various third bodies depend principally on the 
stability of the intermediate IM complex, it seems reasonable to  as ume tha t  the 
relative efficiencies are independent of the final iodine electronic stat? formed. Thus 
kl, and k,, would show the same dependence on the choice of third boqy M, and hence 
k170c k%I, where k, is the experimentally obtained intercept of equation (23). 

r 

Therefore, (26) becomes 
(&d[Ml)dev hV1- 

Christie (1962) has noted just such a linear relation between the experimental 
values of ([Iz]/[Af])dev and kM. Moreover, the linear relation (27) predicts that  the 
fall-off should be observed with helium as third body at values of [Iz]/[He] which 
are smaller than those used by Christie et al. (1955). Thus, from this viewpoint, 
the  data of Christie et aE. supports this mechanism (equations (15) t o  (19)). However, 
the mechanism fails t o  explain the difference between the 298 Kvalue of ( [Iz]/[Ar])d, 
obtained by Christie et al. (1955), i.e. 4 x lo-&, and that  reported here, i.e. 1 x 10-4 
(see figure 1). 

The temperature dependence of ([Iz]/[WL])dev may be determined by rearrange- 
ment of equation (26) t o  .yield 

(28) 

suming that  k19 has zero activation energy an$ tha t  k-17 has an activation energy 
eguall ta the well depth of the inhmuclear interaction in I[: &e. 21 t o  29 kJmol-l), 
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cquntioii (28) predicts n tmofold iiic.rcnso in ([I,  I/[M I),lnv ~ L S  tomporaturc is inwmsod 
from 208 to 323Ti;, a ~ i d  n 10 to 30-foltl i iw(we  i n  (( Ia]/[M])trov i m  Lcmporrc$nrr, i H  
incwnscd from 298 to 423 K. Although t l i o  dietn of' this work nt 328 and 4211 K nro 
sOlllOwhat scnttcscd, it apltcars t h t  this 1)radiction i s  not f~1t ; i ld;  tho snHot of tho 
fall-off rcppetws to bo roughly ilidcpcdonl of 'I' (iigurcs I%nd 2). 

Tho fourth rcquiroiiicmt of' tho iiiocliaiiisin, tliitt it oxplain tho cliyvpanoios wliich 
figuro 1 shows to osist iiinoirg tdio rcsults obtiiinod in dilTcront Iaboratorios, is also 
not ftilfilled. This mechimisin does not suggest any route by which tho divorso sots 
of data can be made self-consistent. 

The mechanism involving electronically excited 1; ca.n explain the fall-of€ only 
if it is assumed that  1; is deactivated very efficiently by I,(lZ;), so tha t  the de- 
activation by inert gas is a dower process by a factor of TheoreticaI 8tudies 
by Nikitin (1966) support such an assumption. However, Steinfeld & Klemperer 
(1965) found that  &(lZ:) was only ca. seven times more efficient than Ar in the 
electronic de-excitation of I,(3110+,). 

f 

* a  

I 8  

I '  

I 

: i  Participation of intermediate IM complex 
An alternative explanation for the low-ratio fall-off has been proposed by Troe 

& Wagner (1967), who measured the dissociation rate constant for iodine iq argon 
in high pressure (ca. lOMNm-,; 100atm) shock waves. They observed a transition in 
the dissociation sate constant from bimolecular t o  unimolecular with increasing 

a similar transition from third to socond ordor, and by extrapolating their gemlts to 
room tcrnpcraturo thcy predict that 6110 trmsition argon concontration bvould be 
approximately 70 mmol l-l. A similar offoct has been obsorvcd by Porter, Saabo & 
Townsend (1962) for iodine atom recombination in high pres~ures of nitrio oxide 
chaperon. 

In  this case, tllQ mechanism is that  givon by equntions (3) t o  (ti), wborc I, and a 
single inert gas 3% are the Q I ~ Y  chaperons present for tho cases oxpcrimentally con- 
sidered. Furthermore, since the  absolute concentrations of I, used experimentally 
rare always quite small, i t  is safe to assume that K31,[12] 1. I n  this case, (9) be- 

(29)  

The room temperature data of this work (both apparatuses) and the data of &istie 
et ul. (1955) and of Strong et al. (1957) for M = Ar were fitted to  (29) using a Book6 
& Jeeves (1961) pattern search method. The best fit was obtained with a nqa t ive  
value of KgMhBM-M, indicating tha t  the effect of reaction (5) was less than th0 
experirnenkal sca thr  in the data.-fiThe data were then fitted to an expression which 

1 %  

I 

/ I  

I 

1 argon pressure. They suggest that  the recombination rate constant should uaclergo 

t ,i 
~ uk 

3 

- IC3M k4M -k IC31* k4T,[121/[M1 -t l~&XktiM-M[~l .  
E comes 

( I -k &dMI I2 kobs - 

a 
i I 
I 
1 

I 

i 

t Furthermore, a fit, with the four paramfjbrs oonstrained to bo pOSitiVQ yielfled an 
insignifiomtJy small value of .XiMkoM-x whioh had a very largo unoertninty. 
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TABLE 3. RATE AND IQTJILIBRIURX CONSTANTS AT ROOM TEIYHTEIBATURE: 
t .  

These vraluee rare obtained for M = Ar from a fit of equation (30) to 58 experimental hdh; 
the fit had a standard error of & 10 yo. 

K3J mol-1 3.18( & 0.63) 
I&,Ar k,,,/lzmol-2 s - ~  ' 3.00( & 0.16) x IOD 
I<3,,k4,z/1~ mol-a rZ 
k,,Ar/lmol-~s-l 0.94 x 109 
k4,J1 mol-1s-1 1.7 x 109 

1.00( & 0.09) x lox* 

K3,Jl  mol-1 6 x  lo2 

The results of this fit are listed in table 3 along with calculated values for K31, and 
The latter were obtained by assuming that  the steric factor for k4*, anity) was 

twice that for ha. The standard error of the fit was i- 10%; a total c 58 points 
were fitted. This agreement contrasts with the discrepancies in these $suits when 

19 ([1!21/EArl) 
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FIGURE 4. Plot of kSd, = koba (1 f K 3 J A r p  against lg ([Ia]/[Ar]) at 298 K. Data as in E p e  1 and 

table 2; the curve is obtained by substituting the constanta of table 3 into equation (30). 
, Strong et al (1957); 0, C%.ristie et d. (1955); A, this work--a.ppmatus 1; A ,  this 

work-apparatus 2; -, best curve. 

they are treated according to (10) (see figure 1). I n  figure 4, kad, = hobs (1 + H3a,[ArJ)2 
is plotted against log ([I[,]/[Ar]); the experimental points and the curve represented 
by the parameters of table 3 are shown. It was not possible to  apply this analysis to 
the data of Bunker & Davidson (1958), since the individual values of [12J and [Ar] 
were not available. 
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Cn~lculations WXQ carried out to dctermino tho plnusibility of tho niimcricnl values 
of table 3. Tlic value ofklhr wns uscd to  obtain tho hard syhcro collision dinmotor for 
reaction (4). The activation oxicrgy was nssuinod to be eoro; a probability faotor of 
0.6 and an electronic degeneracy factor of iJir for reaotion (4) wcre also assumed. me 
calculated value, 0.23 nm, is reasonable in view of the approximations made. 

The experimental value of Kaar was applied to  expression (24)f to yield the oom- 
bination of values of well depth, E, and equilibrium separation, Re, for the I-& 
interaction, which combination corresponds to  the experimental equilibrium con- 
stant. These are plotted in figure 6. 

c 
I 

I I I I i I 

0.4 0.6 
R,plnnl 

FIGURE 5. I-Ar Intoraction potentiah: combinations of E (well depth) and ROq (equilibrium 
separation) which, on substitution into equation (24)t yield the derived (tab10 3) vdue of 
&ihP* 

l kn l ly ,  tho calculntcd valuo of ICsrs was substitutod into oquntion (IO), cud it was 
fouud tlwt tho assumption, that  li,lg[l[,] < 1, is justified ovor tho oxperimontal 
range of [Iz]. 

As an additional test, the temperature dependence of IC, (defined by equation 
(10) as kA, = kdAr) is predicted by this mechanism. Since reaction (4) is unlilrdy 
to havo any activation oiiergy, tho tcmportkturo dopcndoncc of klAr wns nrtMurncd 
$Q be Ti. Also tho temporatwe dopondoncc of KaAr may bo clctcrminod from cqun- 
tion (24) for any of the ‘suitable' poteiitials illustrated by figure 5. The rasulting 
tgmperaturo depondonco of XC,, for two such 6-Ar potentials is shown in f ipro 6 

,19 P 

.- 

I .  
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along with available experimental data. Values are scaled relative to  the 208K 
value given in table 8. This shows that an I-Rr interqction potcntial 0.9 kY (1.6 

negative temperature dependence of kAr and the apparent low concentration ratio 
fall-off. 

The IN mechanism may be further tested by considering its predictions with 
respect to the four factors treated in the discussion of the 1% mechanism. 

, 

kcal) mol-ldeep with anequilibrium separation of 0.66 nrn can acoountfor both the i 

B 

. ,  

TIK 
] L i x ~ m  6. Temperature dependence of IC, for two possible I-& interaction potentials. The 

experimental curvw are : SCGW, Strong et al. (1957); BD, Bunlcer & Davidson (1958); 
Ps, Porter & Smith (1961); BDGS, Britton, Davidson, Gehman & Schott (1955). 

The first of these involves the plausibility of the internuclear potential required 
by the intermediate IM species. This interaction potential is some five times deeper 
than that calculated for van der Waals' forces between argon and xenon (1.25 k J 
mol-1; 0.3 kcal' mol--1), which is iodine's neighbour in the periodic table. This 
appears quite seasonable to us. 

Inspection of expression (30) indicates that  the fall-off will begin, not a t  a critical 
concentration ratio, but a t  some critical third body concentration; i.e. when K3M[M] 
ceases to  be negligible compared with unity. Thus for various third bodies, the 
critical third body concentration lJVIlaev is proportional to I/KaM. I f  similar 1, 
concentrations are used in all experiments, aa was done in %he work of Christie et at. 
(a955), we may there€ore write 

( [ W W l ) d e v ~  Km* 
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Furthermore, assuming that  k,, will cliangc only sliglitly for different third bodioe 
Jf, the equation (1 )  definition of ka1 yields 

l&J/[W,ev 0~ l c m ~ h ~  c k ~ .  
This is the approximate relation noted by Christie (1962). Xcnce, the LM m ~ ~ ~ i ~ ~ i s ~  
correctly predicts the M dependence of ( [H2]/[N]),,,,. 

The value of [M]dev, as stated previously, is proportional to l/X3M. A4 the  ten+ 
perature increases, K, will decrease; thus [MId,, will iiicrcase. Again assuming tha t  
similar I, concentrations arc used at all temperatures, this mechanism p edicts 
a decrease in ( [I,j/[Mj)d,, with increasing temperature. Bowevcr. in this y~e the 
tempcrature dependence is relatively small because the potential well o 
complex is only about 6.3 kS mol-l deep. Temperature increases from 29 
or 423K respectively, would invoke 18 yo and 50 % decreases in ([12]/[h]),&, which 
is well within the experimental uncertainty (see figures 1 and 2). 

The final test of the IM mechanism is whcther or not it accounts for the discrep- 
ancies, shown in figure 1, between experimental values of IC,,, obtained in different 

d 

i laboratories. A cursory examination of figurc 4 shows this to be the case. 
f 
I -  
1 
I 

The above arguments have shown tha t  taking account of the stcady state concen- 
tration of IM intermediate is the only way of explaining the low conce 
ratios drop-off which agrees with all the  expcrimental observations. I n  (ddition, 
this mcchanism explains the obscrvcd ncgativo tcmpcraturo depcndenqb of the  

I& potential well. 

I 

I 
I experimental rate constants and prcdicts tho depth and minimum positibn of the 

i' 
b This work was supporbed in part by the Nntional Rcsoarcli Council of Canndu, 

by tlic Dcfoncc Itceourcli Board of Cmwh,  grrtnt no. 9630-34, and by tho 
4 
! 

DircctorcEto of Chcitiicid Sciences, U.S. Air Forco O&co of Scicntifio Itoscarch, grtmt 
no. 506-64, 66 and 69. Aclcnowledgcmont is also made to tho donors of the 
Petroleum Research Fund, administered by the Amcricen Chornicnl Society for 
partial support of  this research. Three of us (J. A. Blake, 3n. J. h R o y  and 

J. Bforriss) held graduate fellowships granted by the Government of the  
oviiice of Ontario, Canada. 

Note added in proof, 17 Noverizber 1969. Christie et al. (1955) havc rcportcd room 
temperature recombination rats constants for each o f  the  other inert gases: He, 
Ne, Xi, and Xe. These sets of data were fitted in turn to  equation (301, with 
K81,kaa held fixed at the value given in tablc 3 (1.0 x l O l a  la mol-2 s-2). The results 
are presented in table 4, where kM = K3Mk4M. There were t few experimental 

to be determined with precision, and fox =S H e  and for one 
Ne, KaM was arbitrarily set equal t o  1.0. 

I '  
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TADLI 4. RATE AND EQWILIBRIUM CONSTANTS AT ROOM TNMPEIEATURN 
BOB 34 = He, Me, Mr XND Xs 

M IC33t/12 mol-* s-1 IO-@ &/la mol-a 8-1 

1.0 ( f 0.2) 
1.4 ( f; 0.2) 

He (1.0) 
No (1.0) 

1.3 ( f 0.3) 
Rr 7.3 ( f 4.6) 4.4 ( f (1.6) 
xo 8.4 ( f 2.3) 5.4 ( * 0.3) 

0.1 ( f 6.0) 

The results listed in tables 3 and 4 were obtained using the University of 
Wisconsin bomputing Centre nonlmear regression library @ASAUX. 
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